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Abstract

We study the resolvent Qz = (zIp − 1
n
XXT )−1 for z ∈ C, with ℑ(z) > 0 and where

X = (x1, . . . , xn) ∈ Mp,n is a random matrix with independent but not necessarily
identically distributed columns. Following the concentration of measure framework,
we assume each column vector xi has a “concentration function” α(·/ηp) for a certain
ηp = o(

√
p) and α : R+ → R+ possibly slowly decaying non-increasing mapping. In

particular an hypothesis on independence between the entries of xi is not required.
Quasi-asymptotically, Qz has a natural deterministic equivalent Q̃z, which depends
on the second moments of the column vectors x1, . . . , xn. We demonstrate that
for a given deterministic matrix A ∈ Mp, the projection Tr(AQz) is concentrated
around Tr(AQ̃z), with decay speed proportional to ηp∥A∥ when

∫
tα(t) dt < ∞ and

proportional to ηp∥A∥HS/
√
n when

∫
t3α(t) dt < ∞.

Keywords: Random matrix theory; Heavy tailed concentration; Hanson-Wright inequality;
Limiting spectral distribution.
MSC2020 subject classifications: 60-08, 60B20, 62J07.

Notations

Let us introduce the notations R+ ≡ [0,∞), R∗
+ ≡ (0,+∞) and H ≡ {z ∈ C,ℑ(z) > 0}

(the complex half plane). Given n, p ∈ N, [n] ≡ {1, . . . , n}, the entries of a vector x ∈ Cp

are generally denoted x1, . . . , xp, the columns of a complex matrix A ∈ Mp,n are denoted
a1, . . . , an. Let us denote Mn, the set of square matrices Mn,n, Hn, the set of Hermitian
matrices and Dn, the set of diagonal matrices. Given M ∈ Mp,n the transpose of M
i denoted MT and the transpose conjugate is denoted M∗ ≡ M̄T . We introduce the
natural order relation on Hn, given A,B ∈ Hn:

A ≤ B ⇐⇒ ∀x ∈ Cn : x∗(B −A)x ≥ 0.

Given x ∈ Cn, D = Diag(x) ∈ Dn is the diagonal matrix having the elements x1, . . . , xn on
the diagonal then one usually denote ∀i ∈ [n], Di ≡ xi. Given a square matrix A ∈ Mp(C),
the spectrum of A is Sp(A) and we denote |A| =

√
AA∗ ∈ Hp.

The ℓ2 norm on Cp is denoted ∥ · ∥ (∥x∥ ≡
√∑p

i=1 |xi|2), then the Hilbert-Schmidt
norm is denoted ∥ · ∥HS (∀M ∈ Mp,n: ∥M∥HS =

√
Tr(MM∗) = sup∥A∥HS≤1 |Tr(AM)|),
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the spectral norm is denoted ∥ · ∥ (∥M∥ = sup∥x∥=1 ∥Mx∥) and the nuclear norm is

denoted ∥ · ∥∗ (∥M∥ = Tr(
√
MM∗) = sup∥A∥≤1 |Tr(AM)|). Given two normed vector

spaces (E, ∥ · ∥E) and (F, ∥ · ∥F ), and a linear mapping u : E → F , the operator norm of u
is denoted ∥u∥ ≡ sup∥x∥E≤1 ∥u(x)∥F .

Given an index set Θ and two family of parameters (aθ)θ∈Θ ∈ RΘ
+ and (bθ)θ∈Θ ∈ RΘ

+,
we denote: “aθ ≤ O(bθ), θ ∈ Θ” or “a ≤ O(b)” or, abusively, “a ≤ O(b), θ ∈ Θ” iif there
exists a constant C > 0 such that ∀θ ∈ Θ: aθ ≤ Cbθ (and we note a ≥ O(b) iif ∃C > 0

such that ∀θ ∈ Θ, aθ ≥ Cbθ). We further denote a ≤ o(1) iif for any constant ε > 0, there
exists a finite subset T ⊂ Θ such that ∀θ ∈ Θ \ T : aθ ≤ ε and a ≤ o(b) signifies a

b ≤ o(1).
If A,B ∈

∏
θ∈Θ Hnθ

are two families of Hermitian matrices, A ≤ O(B) means that there
exists a constant C > 0 such that:

∀θ ∈ Θ : Bθ −Aθ ≥ CInθ
.

Given a normed vector space E, random variables Y ∈ E are typically measurable
mapping from a certain probability space Ω to E but Ω is omitted for simplicity. Without
any further specification, Y ′ designates an independent copy of Y .

Introduction

Considering a non centered sample covariance matrix 1
nXXT , where X = (x1, . . . , xn) ∈

Mp,n is the data matrix, The spectral distribution of 1
nXXT , denoted by µ is given by

the expression µ ≡ 1
p

∑
λ∈Sp( 1

nXXT ) δλ and is classically studied through its Stieltjes
transform, which is defined as:

g : C \ Sp
(
1

n
XXT

)
−→ C

z 7−→
∫
R

dµ(λ)

z − λ
.

Note that actually The Steiltjes transform g is linked to the so-called resolvent of 1
nXXT

Qz ≡ (Ip − 1
nzXXT )−1 through the formula g(z) = 1

zp Tr(Q
z) valid for all z ∈ C \

Sp
(
1
nXXT

)
. The importance of the Stieltjes transform has been thoroughly established

in seminal works [MP67, Sil86], through the Cauchy integral formula. This formula
allows the evaluation of integrals of analytical functions f defined on a neighborhood of
a subset B ⊂ Sp( 1nXXT ) by:∫

B

f(λ)dµ(λ) =
1

2iπ

∮
γ

f(z)g(z)dz,

where γ : [0, 1] → C \ Sp( 1nXXT ) is a closed contour in C \ Sp
(
1
nXXT

)
on which f is

defined. The interior Iγ satisfies Iγ ∩ Sp( 1nXXT ) = B ∩ Sp( 1nXXT ).
Historically, much of the foundational work in sample covariance matrices focused

on matrices with independent and identically distributed (i.i.d.) entries [MP67, Wac78,
Yin86, SB95] or on Gaussian hypotheses allowing to access independence assumptions
through linear transformation [BKV96, KA16]. The readers are referred to the mono-
graphs [BS09], [AGZ10], [PŜ11] for further details.

In practical scenarios taken from telecommunication [WCDS12] or machine learning,
data matrices often exhibit strong correlation between the entries. This has prompted
significant interest in extending random matrix theory to account for dependent entries
like in [Ada11, DKL22] where they mainly assume concentration hypotheses on the
second moments of the columns of the matrix. These results are already quite strong
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but mainly concentrate on the limiting behavior when we try here to provide quasi-
asymtotic results on the eigenvalue distribution. This is done through a concentration
of measure framework (for comprehensive presentation refer to [Led05, BLM13] or to
[Tao12, Ver18] for specific applications to random matrices). To reach “heavy tailed”
settings, we consider an example recently presented in [Lou24] of random vectors whose
1-Lipschitz observations have only finite moment up to a certain order.

We are able to show Marcenko-Pastur convergence under our hypotheses assuming
that the second moment is bounded and we can also reach convergence of the resolvent
in Hilbert-Schmidt norm under the hypothesis of bounded fourth moment. This last
result seems to be very close to the local law convergence which was first set for Wigner
matrices in [ESY09] and adapted to Wishart matrices in [ESYY12, KM23]. However we
still do not manage to get the typical decay proportional to 1

nℑ(z) when z is getting close

to the spectrum. To avoid presenting unaesthetic and unusable powers of ℑ(z) in our
result, we thus decided to take z as a fixed complex number of either positive imaginary
part or negative real part.
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1 Main results

Our approach naturally decomposes in two almost independent steps:

1. A purely deterministic approach relying on complex analysis and basic topology
and algebra to express the so called “deterministic equivalent” of the resolvent.

2. A probabilistic approach relying on concentration of measure assumption to set
concentration of the resolvent binding around its deterministic equivalent.

1.1 Deterministic results

The ultimate goal of our paper is to express quasi-asymptotic results, meaning
that our concentration inequality will be valid for big but finite p and n. However we
adopt, although misleading, the denomination “limiting distribution” that can be found
in random matrix litterature. For us it will simply be a deterministic approxiamte of
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the eigen value distribution of 1
nXXT , given n, p ∈ N. It expresses thanks to the non

centered population covariance matrices:

∀i ∈ [n] : Σi ≡ E[xix
T
i ]

and the following uniquely defined diagonal matrix:

Theorem 1.1. Given n nonnegative symmetric matrices Σ1, . . . ,Σn ∈ Mp, for all z ∈ H,
the equation:

∀i ∈ [n], Li = z − 1

n
Tr

Σi

Ip −
1

nz

n∑
j=1

Σj

Lj

−1
 (1.1)

admits a unique solution L ∈ Dn(H) which we denote by Λ̃z.

Then the mapping

g̃ : z 7→ 1

p
Tr(Q̃Λ̃z

) =
1

z

(
1− n

p

)
+

1

p

n∑
i=1

1

Λ̃z
i

happens to be an analytical mapping that can be shown to be the Stieltjes transform of
the limiting distribution.

Theorem 1.2. The mapping g̃ is the Stieltjes transform of the measure:

µ̃ =

(
n

p
− 1

)
δ0 −

1

p

n∑
i=1

µ̃i,

where δ0 is the Dirac measure on 0 and the measures µ̃1, . . . , µ̃n have as Stieltjes trans-
form z 7→ − 1

Λ̃z
i

. And µ̃ has a compact support S̃ ⊂ R+.

Once those object are well defined, one can introduce for all z ∈ C\S̃ the deterministic
equivalent:

Q̃Λ̃z

≡

Ip −
1

nz

n∑
j=1

Σj

Λ̃z
j

−1

,

and next part of the paper will aim at showing the convergence of the resolvent Qz

around Q̃Λ̃z

.

1.2 Probabilistic results

In what follows, we study the asymptotic properties of the eigenvalue distribution
when p and n tend to infinity, the random matrix X should then be seen as a family
of random matrices depending on the asymptotic parameters p, n ∈ N, however, for
simplicity we will not index the family of matrices X and of columns x1, . . . , xn, . . . with
n and p.

To stay as simple as possible in this first presentation, we only present here two
representative settings, one of highly concentrated random vectors and the other one
allowing heavy-tailed decays. More general assumptions will be presented in Section ??.

Setting (S). There exist some parameters λ,C,K, r > 0 such that for all p, n ∈ N, there
exist a set of n independent Gaussian random vectors z(1), . . . , z(n) ∼ N (0, Ip), a set of n
λ-Lipschitz mappings G(i) : Rp → Rp, i ∈ [n] such that:

(S1) ∀i ∈ [n] : xi = G(i)(z(i)).
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(S2) ∀i ∈ [n], there exist g1, . . . , gp : R→ R, such that:

xi = G(i)((g
(i)
1 (z

(i)
1 ), . . . , g(i)p (z(i)p )), and sup

i∈[n],j∈[p]|v|,|w|≤u

∥g(i)j (v)− g
(i)
j (w)|

|v − w|
≤ C

u
e

u2

2r ,

and we assume in both case that ∥E[xi]∥ ≤ K. Later, we will restrict ourselves to
the cases r > 2 and r > 4.

Under this setting, it can be proven that ([?]) for all f : Rp → R and all F : Mp,n → R

1-Lipschitz (respectively for the euclidean and for the Hilbert-Schmidt norm):

sup
i∈[n]

P (|f(xi)− f(x′
i)| ≥ t) ≤ α

(
t

ηp

)
and P (|F (X)− F (X ′)| ≥ t) ≤ α

(
t

ηpηn

)
, (1.2)

where the concentration function α : R+ → R+ and the parameters ηk, k ∈ N vary
depending on the exact setting:

• in setting (S1): α(t) = 2e−(t/λ)2/2 and ∀k ∈ N ηk = 1

• in setting (S2): α(t) = 6(Cλ
t )r and ∀k ∈ N: ηk = k1/r.

These concentration of measure results being given, the assumptions of next theorems
will then sound more natural. First when the second or fourth moment of α is bounded
one can set the concentration of the projections of the resolvent.

Theorem 1.3. Considering a constant γ > 0, a family of random matrices (X(p,n))p,n∈N ∈∏
p,n∈NMp,n satisfying Setting (S), let us assume that the concentration function α :

R → R introduced in (1.2) satisfies that1
∫
tα(t)dt < ∞ then given z ∈ H, there exist

some constants C, c > 0 such that for all n, p ∈ N such that p ≤ γn:

P
(∣∣∣Tr(A(Qz − Q̃Λ̃z

))
∣∣∣ ≥ t

)
≤ Cα

(
c
√
nt

ηpp∥A∥

)
.

In the same setting, if we assume further that2
∫
t3α(t)dt < ∞, then the concentration is

expressed as:

P
(∣∣∣Tr(A(Qz − Q̃Λ̃z

))
∣∣∣ ≥ t

)
≤ Cα

(
c
√
nt

η3p∥A∥HS

)
.

As a corollary, assuming that the second moment of α is bounded, one can set the
concentration of the Stieltjes transform of Qz.

Corollary 1.4. In the same setting as in 1.3, if we assume that α has bounded second
moment

∫
tα(t)dt < ∞, then the concentration of the Stieltjes transform is expressed as:

P

(∣∣∣∣g(z)− 1

zp
Tr(Q̃Λ̃z

)

∣∣∣∣ ≥ 0

)
≤ Cα(c

√
pt/ηp).

After introducing some basic lemmas to control the norm and the concentration of
the resolvent, the two results of Theorem 1.3 will be proven in two different subsections
of Section 3 since they rely on quite different approach.

1That happens in Setting (S1) or in Setting (S2) when r > 2.
2That happens in Setting (S1) or in Setting (S2) when r > 4.
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2 Deterministic study: Definition of the limiting distribution

2.1 Definition of the deterministic equivalent of the resolvent

We consider in the whole section a set of n nonnegative symmetric matrices Σ1, . . . ,Σn ∈
Mp (they will be in next section the non-centered empirical covariance matrices of the
columns of X). Let us then introduce the mapping Φz:

∀L ∈ Dn(H) : Φz(L) ≡ Diag

(
z − 1

n
Tr
(
ΣiQ̃

L
))

1≤i≤n

we want to show that Φz admits a unique fixed point Λ̃z. For that purpose,let us introduce
a semi-metric dH for which Φz happens to be contractive. Then a Banach-like theorem
(Theorem B.6 given in the Appendix B) will provide the existence and uniqueness of Λ̃z.
For any D,D′ ∈ Dn(H) let us define:

dH(D,D′) = sup
1≤i≤n

|Di −D′
i|√

ℑ(Di)ℑ(D′
i)
.

To be able to bound the variation of Φz for the semi-metric dH, one first needs to restrict
the study on a subset:

DΦz ≡ {D ∈ Dn(H), D/z ∈ Dn(H)} ⊂ Dn(H).

Lemma 2.1. For any z ∈ H, Φz(DΦz ) ⊂ DΦz .

Proof. Considering z ∈ H, and L ∈ DIz and i ∈ [n], the decomposition Q̃L =(
Ip − 1

n

∑n
j=1

ℜ(Lj)Σj

|Lj |2 + i
n

∑n
j=1

ℑ(Lj)Σj

|Lj |2

)−1

allows us to set:

ℑ (Φz(L)i) =
1

2i
(Φz(L)i − Φz(L)i)

= ℑ(z) + 1

2in
Tr
(
Σi

(
Q̃L − Q̃L

))
= ℑ(z) + 1

n
Tr

Σi

n∑
j=1

¯̃QL

(
ℑ(Lj)Σj

|Lj |2

)
Q̃L

 > 0

(since ¯̃QLΣiQ̃
L is a non negative Hermitian matrix). The same way, one can show:

ℑ (Φz(L)i/z) =
1

2i
Tr

(
Σi

(
Q̃L

z
−

¯̃QL

z̄

))
=

1

2i|z|2
Tr

Σi
¯̃QL

 n∑
j=1

ℑ(Lj/z)Σj

|Lj/z|2

 Q̃L

 > 0

Let us now express the Lipschitz parameter of Φz for the semi metric dH.

Proposition 2.2. For any z ∈ H, the mapping Φz is 1-Lipschitz for the semi-metric dH
on DΦz and satisfies for any L,L′ ∈ DΦz :

dH(Φ
z(L),Φz(L′)) ≤

√
(1− ζ(z, L))(1− ζ(z, L′))dH(L,L

′),

where for any w ∈ H and L ∈ DΦw :

ζ(w,L) =
ℑ(w)

sup1≤i≤n ℑ(Φw(L))i
∈ (0, 1).
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Proof. Let us bound for any L,L′ ∈ DΦz :

|Φz(L)i − Φz(L′)i| =
1

n
Tr

ΣiQ̃
L

 1

n

n∑
j=1

Lj − L′
j

LjL′
j

Σj

 Q̃L′


=

1

n
Tr

ΣiQ̃
L

 1

n

n∑
j=1

Lj − L′
j√

ℑ(Lj)ℑ(L′
j)

√
ℑ(Lj)ℑ(L′

j)

LjL′
j

Σj

 Q̃L′



≤ dH(L,L
′)

√√√√√ 1

n
Tr

ΣiQ̃L

 1

n

n∑
j=1

ℑ(Lj)Σj

|Lj |2

 ¯̃QL



·

√√√√√ 1

n
Tr

ΣiQ̃L′

 1

n

n∑
j=1

ℑ(L′
j)Σj

|L′
j |2

 ¯̃QL′


< dH(L,L

′)
√

(ℑ(Φz(L)i)−ℑ(z)) (ℑ(Φz(L′)i)−ℑ(z)), (2.1)

thanks to Cauchy-Schwarz inequality and the identity

0 ≤ 1

n
Tr

Σi

n∑
j=1

¯̃QL

(
ℑ(Lj)Σj

|Lj |2

)
Q̃L

 = ℑ(Φz(L)i)−ℑ(z) (2.2)

issued from the proof of Lemma 2.1. By dividing both sides of (2.1) by
√

ℑ(Φz(L)i)ℑ(Φz(L′)i),
we obtain the desired Lipschitz constant.

Lemma 2.3. Given ∆ ∈ DΦz , ∥Q̃∆∥ ≤ O
(

|z|
ℑ(z)

)
.

Here, one could have merely assumed ∆
z ∈ Dn(H) instead of ∆ ∈ DΦz .

Proof. Let us consider the inverse matrix of 1
z Q̃

∆ = (zIp − 1
n

∑n
i=1

zΣi

∆i
)−1 applied to a

vector u ∈ Rp∥∥∥∥∥
(
zIp −

1

n

n∑
i=1

Σi

∆i/z

)
u

∥∥∥∥∥
2

=

∥∥∥∥∥
(
ℜ(z)Ip −

1

n

n∑
i=1

ℜ(∆i/z)

|∆i/z|2
Σi

)
u+ i

(
ℑ(z)Ip +

1

n

n∑
i=1

ℑ (∆i/z)

|∆i/z|2
Σi

)
u

∥∥∥∥∥
2

≥

∥∥∥∥∥
(
ℑ(z)Ip +

1

n

n∑
i=1

ℑ (∆i/z)

|∆i/z|2
Σi

)
u

∥∥∥∥∥
2

≥ ∥ℑ(z)u∥2

Reversing this inequality, we deduce the result of the Lemma.

Lemma 2.4. Given L ∈ DΦz , we can bound:

ℑ(z)In ≤ |Φz(L)| ≤
(
|z|+ |z|p∥Σ∥

nℑ(z)

)
In and

(
ℑ(z)

∥Σ∥+ |z|ℑ(z)

)
Ip ≤

∣∣∣Q̃Φz(L)
∣∣∣ ≤ |z|Ip

ℑ(z)
.

where ∥Σ∥ ≡ supi∈[n] ∥Σi∥.

Proof. The lower bound of Φz(L) is an immediate consequence of the inequality ℑ(Φz(L)) ≥
ℑ(z) (see the proof of Lemma 2.1). Given L ∈ DΦz , we know from Lemma 2.3 that
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|Q̃L| ≤ |z|
ℑ(z) which directly provides the upper bound on Φz(L). Finally, we can bound:∥∥∥∥∥Ip − 1

n

n∑
i=1

Σi

Φz(L)i

∥∥∥∥∥ ≤ |z|+ 1

n

n∑
i=1

∥Σi∥
|ℑ(Φz(L)i)|

≤ |z|+ ∥Σ∥
ℑ(z)

,

which gives us the lower bound on |Q̃Φz(L)|.

Theorem 2.5. For all z ∈ H, the equation:

∀i ∈ [n], Li = Φz(L)i ≡ z − 1

n
Tr

Σi

Ip −
1

n

n∑
j=1

Σj

Lj

−1
 (2.3)

admits a unique solution L ∈ Dn(H) which we denote by Λ̃z, it satisfies in particular
ℑ(Λz/z) > 0.

Proof. On the domain DΦz , the mapping Φz is bounded and contracting with respect to
the semi-metric dH thanks to Proposition 2.2 and Lemma 2.4 (indeed infL∈DΦz ζ(z, L) > 0).
Therefore the hypotheses of Theorem B.6 are satisfied, ensuring the existence of a unique
diagonal matrix Λ̃ ∈ DΦz such that Φz(Λ̃) = Λ̃. Besides, Proposition 2.2 being true on
the whole domain Dn(H), we are sure that there are no other fixed point in the entire
set Dn(H).

2.2 Definition of the limiting distribution

We present here some arguably well known results (see [KA16] for instance) about
the Stieltjes transform of the eigenvalue distribution which provide valuable insights into
its support. To show that g̃ is a Stieltjes transform, we will use the following theorem
that can be found, for instance, in [Bol97]:

Theorem 2.6. Given an analytic mapping f : H → H, if limy→+∞ −iyf(iy) = 1 then
f is the Stieltjes transform of a probability measure µ that satisfies the following two
reciprocal formulas:

• f(z) =
∫ µ(dλ)

λ−z ,

• for any continuous point3 a < b: µ([a, b]) = limy→0+
1
π

∫ b

a
ℑ(f(x+ iy))dx.

If, in particular, ∀z ∈ H, zf(z) ∈ H, then µ(R−) = 0 and f admits an analytic continuation
on C \ (R+ ∪ {0}).

The first hypothesis to verify for applying Theorem 2.6 is the analyticity of g̃, which
follows from the analyticity of the mapping z → Λ̃z. While it is possible to prove the
analyticity of Λ̃z using limiting arguments, by viewing it as the limit of a sequence of
analytic mappings, we opt instead to derive this property directly from its original defini-
tion, even though the approach is somewhat more laborious. We start with establishing
continuity by using Proposition B.8.

Proposition 2.7. The mapping z 7→ Λ̃z is continuous on H.

Proof. Given z ∈ H, we consider a sequence (ts)s∈N ∈ {w ∈ C | w + z ∈ H} such that
lims→∞ ts = 0. We now verify the assumption of Proposition B.8 where for all s ∈ N,
fs = Φz+ts , Γ̃s = Λ̃z+ts and Γs = Λ̃z (which does not depend on s). From Proposition 2.2
we already know that each fs is contracting for the stable semi-metric with a Lipschitz

3We can add the property ∀x ∈ R, µ({x}) = limy→0+ yℑ(f(x+ iy)), here for µ to be continuous in a, b, we
need µ({a}) = µ({b}) = 0
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parameter λ < 1 which can be chosen independent from s for sufficiently large s. Next,
we express for any s ∈ N and any i ∈ [n]:

fs(Γs)i − Γs
i = Φz+ts(Λ̃z)i − Λ̃z

i = ts (2.4)

Noting that for sufficiently large s, ℑ(Φz+ts(Λ̃z)) = ℑ(ts) + ℑ(Λ̃z) ≥ ℑ(Λ̃z)
4 ≥ ℑ(z)

4 , we

observe that dH(ℑ(fs(Γs)i),ℑ(Γs
i )) ≤

4|ℑ(ts)|
ℑ(z) −→

s→∞
0. Thus, the assumptions of Proposi-

tion B.8 are satisfied, and we can conclude that there exists a constant K > 0 such that
for all s ∈ N: ∥∥∥∥∥∥ Λ̃z+ts − Λ̃z√

ℑ(Λ̃z+ts)ℑ(Λ̃z)

∥∥∥∥∥∥ ≤ K|ts|

infi∈[n]

√
ℑ(Λ̃z+ts)ℑ(Λ̃z)

≤ 2K|ts|
ℑ(z)

.

Besides, we can also bound:

√
ℑ(Λ̃z+ts) ≤

2
√
ℑ(Λ̃z)

ℑ(z)
(ℑ(Λ̃z) +Kts) ≤ O(1),

This directly implies that ∥Λ̃z+ts − Λ̃z∥ ≤ O(ts) −→
s→∞

0, and consequently, the mapping

z 7→ Λ̃z is continuous on H.

Let us now show that z 7→ Λ̃z is differentiable. Using the notation f t = Φz+t, we can
decompose:(

Λ̃z+t − Λ̃z
)
=
(
f t(Λ̃z+t)− f t(Λ̃z) + f t(Λ̃z)− f0(Λ̃z)

)
= Diagi∈[n]

 1

n
Tr

ΣiQ̃
Λ̃z+t 1

n

n∑
j=1

Λ̃z+t
j − Λ̃z

j

Λ̃z+t
j Λ̃z

j

ΣjQ̃
Λ̃z

+ tIn

Now, we introduce the vector a(t) =
(
Λ̃z+t
i − Λ̃z

i

)
1≤i≤n

∈ Cn, and for any D,D′ ∈ Dn(H),

the matrix:

Ψ(D,D′) =

 1

n

Tr
(
ΣiQ̃

DΣjQ̃
D′
)

DjD′
j


1≤i,j≤n

∈ Mn

we then have the equation:

a(t) = Ψ(Λ̃z, Λ̃z+t)a(t) + t1. (2.5)

To be able to solve this equation we need the following property:

Lemma 2.8. For all z, z′ ∈ H, In −Ψ(Λ̃z, Λ̃z′
) is invertible.

Proof. We are going to show that In − Ψ(Λ̃z, Λ̃z′
) is injective. We introduce a vector

x ∈ Cn such that x = Ψ(Λ̃z, Λ̃z′
)x. We can bound using the Cauchy-Schwatz inequality,

with similar calculations as those in the proof of Proposition 2.2:

|xi| =

∣∣∣∣∣∣ 1n Tr

ΣiQ̃
Λ̃z

n∑
j=1

xjΣj√
ℑ(Λ̃z)ℑ(Λ̃z′)

√
ℑ(Λ̃z)ℑ(Λ̃z′)

Λ̃z
j Λ̃

z′
j

Q̃Λ̃z′

∣∣∣∣∣∣
≤ sup

j∈[n]

∣∣∣∣∣∣ xj√
ℑ(Λ̃z)ℑ(Λ̃z′)

∣∣∣∣∣∣
√
ℑ(Λ̃z

i )−ℑ(z)
√
ℑ(Λ̃z′

i )−ℑ(z′)
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therefore, if we denote ∥x∥Λ̃ ≡ supi∈[n]

∣∣∣∣ xj√
ℑ(Λ̃z′ )ℑ(Λ̃z′ )

∣∣∣∣, we have then the following bound:

∥x∥Λ̃z′ ,Λ̃z′ ≤ ∥x∥Λ̃z′ ,Λ̃z′

√
(1− ζ(z, Λ̃z′))(1− ζ(z, Λ̃z′))

This directly implies that x = 0 since we know that ζ(z, Λ̃z(′)
) = ℑ(w)

sup1≤i≤n ℑ(Φw(Λ̃z(′) ))i
∈

(0, 1).

The continuity of z 7→ Λ̃z given by Proposition 2.7 and the continuity of the inverse
operation on matrices (around In −Ψ(Λ̃z, Λ̃z) which is invertible), allows us to let t tend
to zero in the following equation

1

t
a(t) = (In −Ψ(Λ̃z, Λ̃z+t))−1

1,

to obtain:

Proposition 2.9. The mapping z 7→ Λ̃z is analytic on H, and satisfies:

∂Λ̃z

∂z
= Diag

(
(In −Ψ(Λ̃z, Λ̃z))−1

1

)
We can then conclude that for all i ∈ [n], the mappings z → − 1

Λz
i

are Stieltjes
transforms.

Proposition 2.10. For all i ∈ [n], there exists a distribution µ̃i with support on R+ whose
Stieltjes transform is z 7→ − 1

Λ̃z
i

Proof. We now check the hypotheses of Theorem 2.6. We already know that z 7→ − 1
Λ̃z

i

is

analytical thanks to Proposition 2.9 and the lower bound ℑ(Λ̃z
i ) ≥ ℑ(z) > 0. Furthermore,

∀z ∈ H:

ℑ

(
− 1

Λ̃z
i

)
=

ℑ(Λ̃z
i )

|Λ̃z
i |

> 0 and ℑ

(
− z

Λ̃z
i

)
=

ℑ(Λ̃z
i /z)

|Λ̃z
i /z|

> 0,

since Λ̃z ∈ DΦz
. Finally recalling from Lemma 2.4 that for all y ∈ R+, ∥Q̃Λ̃iy∥ ≤ |iy|

ℑ(iy) = 1,

we directly see that for all j ∈ [n]:

Λ̃iy
j

iy
= 1 +

1

iyn
Tr(ΣjQ̃

Λ̃iy

) −→
y→+∞

1.

we can thus conclude with Theorem 2.6.

We can then easily deduce from Proposition 2.10 that g̃ is a Stieltjes transform of the
measure:

µ̃ =

(
n

p
− 1

)
δ0 −

1

p

n∑
i=1

µ̃i,

where δ0 is the Dirac measure on 0, and µ̃i is the measure whose Stieltjes transform
is z 7→ − 1

Λ̃z
i

. To show Theorem 1.2, one is just left to show that the supports of all the

measures µi, i ∈ [n] (and the measure µ̃) are bounded. Actually, they are all bounded
with4:

xΣ ≡ max

(
8p

n
, 4

)
∥Σ∥.

We need the following preliminary Lemma.

4Recall that ∥Σ∥ ≡ supi∈[n] ∥Σi∥.
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Lemma 2.11. For all z ∈ H such that ℜ(z) ≥ xΣ:

ℜ(Λ̃z) ≥ ℜ(z)In
2

and ∥Q̃Λ̃z

∥ ≤ 2

Proof. Let us show first that given z ∈ H such that ℜ(z) ≥ xΣ, Φz is stable on A ≡
Dn({z ∈ H : ℜ(z) ≥ x

2}) ∩ DΦz . Given L ∈ A:

ℜ
(
(Q̃L)−1

)
= Ip −

1

n

n∑
i=1

ℜ(Λi)Σi

|Li|2
≥
(
1− 2∥Σ∥

xΣ

)
Ip ≥ Ip

2
,

which implies (as in the proof of Lemma 2.3) that ∥Q̃L∥ ≤ 2. We can then bound:

ℜ(Φz(L)i) = x− 1

n
Tr

ΣiQ̃
L

1− 1

n

n∑
j=1

ℜ(Lj)Σj

|Lj |2

 ¯̃QL


≥ x− 4

n
Tr (Σi) ≥

x

2
+

xΣ

2
− 4p∥Σ∥

n
≥ x

2
≥ x

2
.

Now, setting L0 ≡ (ℜ(z) + i)In and Lk = (Φz)k(L0) for all k > 0, we know from the
proof of Theorem 2.5 that Λ̃z = limk→∞ Lk, thus, A being a closed set, Λ̃z ∈ A, and in
particular, ∀i ∈ [n], ℜ(Λ̃z

i ) ≥
ℜ(z)
2 .

Note then that we can deduce, as an interesting (but not useful) side result from
Lemma 2.8:

Lemma 2.12. Given any z, z′ ∈ H, ∥Ψ(Λ̃z, Λ̃z′
)∥ < 1

Proof. We know from Lemma 2.11 that ∀z, z′ ∈ H such that ℜ(z),ℜ(z′) ≥ x0:

∣∣∣Ψ(Λ̃z, Λ̃z′
)i,j

∣∣∣ ≤ 1

n

∣∣∣∣∣∣
Tr
(
ΣiQ̃

Λ̃ΣjQ̃
Λ̃′
)

Λ̃jΛ̃′
j

∣∣∣∣∣∣ ≤ ∥Σ∥2p
n

4

ℑ(z)
,

which can be as small as needed if we let ℑ(z) tend to +∞. Therefore, from the continuity
of (z, z′) 7→ ∥Ψ(Λ̃z, Λ̃z′

)∥, one can deduce that ∀z, z′ ∈ H, ∥Ψ(Λ̃z, Λ̃z′
)∥ ≤ 1 (otherwise,

there would exists z, z′ ∈ H such that Ψ(Λ̃z, Λ̃z′
) would not be invertible, which would

contradict Lemma 2.8).

Let us finally conclude.

Proof of Theorem 1.2. We are just left to prove that µ̃ has a compact support. Given
z ∈ H let us denote for simplicity x ≡ ℜ(z) and y ≡ ℑ(z) such that z = x+ iy. Then, with
the notations of Lemma 2.11, assuming that x ≥ xΣ, we know that:

ℑ(Λ̃z
i ) = y +

1

n
Tr

ΣiQ̃
Λ̃z

i
1

n

n∑
j=1

ℑ(Λ̃z
j )Σj

|Λ̃z
j |2

¯̃QΛ̃z
i


≤ y +

4p∥Σ∥2

n2
sup
j∈[n]

ℑ(Λ̃z
j )

ℜ(Λ̃z
j )

2

Besides ℜ(Λ̃z
j )

2 ≥ xxΣ

4 , and denoting ν ≡ 16p∥Σ∥2

n2xΣ
which allows us to eventually bound:

sup
j∈[n]

ℑ(Λ̃z
j ) ≤ y +

ν

x
sup
j∈[n]

ℑ(Λ̃z
j )
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This implies, for x ≥ 2ν:

sup
j∈[n]

ℑ(Λ̃z
j ) ≤

y

1− ν
x

≤ 2y −→
y→0+

0.

returning to the Stieltjes transform, that gives us:

ℑ(g̃(x+ iy)) =
y

x2 + y2

(
n

p
− 1

)
+

1

p

n∑
i=1

ℑ(Λ̃z
i )

ℜ(Λ̃z
i )

2 + ℑ(Λ̃z
i )

2
−→
y→0+

0

That allows us to conclude that µ̃ has compact support thanks to the relation between µ̃

and g̃ given in Theorem 2.6.

Let us end this subsection with an interesting connection between the deterministic
Stieltjes transform g̃ and the random one defined for all z ∈ H as:

g(z) =
1

p
Tr(Qz) =

1

z
+

1

npz

n∑
i=1

xT
i Q

zxi (2.6)

Remark 2.13. A classical procedure in Random matrix theory is to disentangle the depen-
dence between Q and xi thanks to the introduction of a resolvent deprived of the contribu-
tion of xi, namely: Qz

−i ≡ (In− 1
nzX−iX

T
−i)

−1 where X−i = (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈
Mp,n. The Schur identity then provides

Qz = Qz
−i +

1

nz
Qzxix

T
i Q

z
−i and

1

z
Qzxi =

Qz
−ixi

z − 1
nx

T
i Q

z
−ixi

(2.7)

To get closer to the form of g̃, one naturally introduce the diagonal matrix Λ∈Dn(H),
defined for any i ∈ [n] as:

Λz
i ≡ z − 1

n
xT
i Q−izi,

and that will play a central role in next section (similar to the role Λ̃z
i played in this

section). The identity zQz − 1
nXXTQz = Ip and (2.7) finally give us from (2.6):

g(z) =
1

z
+

1

npz

n∑
i=1

xT
i Q−ixi

Λz
i

=
1

z

(
1− n

p

)
+

1

p

n∑
i=1

1

Λz
i

= gΛ
z

(z),

Given a mapping ∆ : H ∋ z 7→ ∆zDn(H), if one denotes:

g∆ : z 7−→ 1

z

(
1− n

p

)
+

1

p

n∑
i=1

1

∆z
i

,

then, finally5:

g = gΛ and g̃ ≡ gΛ̃.

5Similarly, the Stieltjes transform of the spectral distribution of 1
n
XTX is ǧ = ǧΛ

z
, where for all D : H ∋

z 7→ Dz ∈ Dn(H), ǧD
z
: z 7−→ 1

p

∑n
i=1

1
Dz . This is straightforward from the identity 1

λz
i
≡ Q̌i,i given later

in 3.5. we see here that the spectrum of 1
n
XTX has |n− p| less or more 0 eigenvalues than 1

n
XXT .
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3 Probabilistic study: concentration around the deterministic
equivalent

3.1 Problem settlement

Notations

We will set in this section quasi-asymptotic results on random matrices, meaning that
we will express convergence results for inequalities or concentration inequalities when
important quantities like the number of rows p and the number of columns n converge to
∞. Just the rate of convergence is relevant, therefore, in order to remove smoothly the
constants from the quasi-asymptotic result, we will introduce several notations. Below,
the set of indexes Θ could be thought to be N×N×C or even something more elaborate
like {(p, n, z) ∈ N×N× C, p ≤ n,ℑ(z) ∈ (0, 1]}.

Following a previous work done in [?] , we will express concentration inequalities
with operators which are set valued mappings and conversely (which gives natural
meaning to a ≤ α(t) for some a, t ∈ R and α : R 7→ 2R). Classical mappings from R to
R are identified as singleton-valued operators. An operator α : R 7→ 2R is said to be a
positive probabilistic operator or a “concentration function” and we denote α ∈ MP+

iif
it is maximally decreasing6 {1} ⊂ Ran(α) and Dom(α) ⊂ R+. Given a parameter r > 0,
the r-moment of a concentration function α ∈ MP+

is defined as7:

M (k)
α ≡ r

∫
tr−1α(t)dt =

∫
α
(
t
1
r

)
dt.

Given two families of probability operators α, β ∈ MΘ
P+

, we will denote α ⊂ β iif there
exist two constants C, c > 0 such that:

∀θ ∈ Θ,∀t ≥ 0 : αθ(t) ≤ Cβθ(ct),

A good illustration of this order relation is given in Lemma A.1.
Let us consider a family of random variables (Xθ)θ∈Θ ∈ RΘ and a family of positive

probabilistic operators (αθ)θ ∈ MΘ
P+

. If there exists some constants C, c > 0 such that
∀θ ∈ Θ:

∀t ≥ 0 : P(|Xθ −X ′
θ| ≥ t) ≤ Cαθ(ct),

where (X ′
θ)θ∈Θ is a family of independent copies of Xθ, θ ∈ Θ, then we denote X ∈ α or

if one needs to describe more precisely the dependence on Θ:

Xθ ∈ αθ, θ ∈ Θ.

When there exists a family of deterministic parameters (X̃θ)θ∈Θ such that ∀θ ∈ Θ:

∀t ≥ 0 : P(|Xθ − X̃θ| ≥ t) ≤ Cαθ(ct),

for some constants C, c > 0, one denotes X ∈ X̃ ± α or more simply X ∈ O(m)± α, for
any (mθ)θ∈Θ such that |X̃| ≤ O(m).

6Following the monotone operator theory (see for instance [BC11]), given an operator α : R 7→ 2R, one
denotes Gra(α) ≡ {(x, y) ∈ R2 : y ∈ α(x)}, the graph of α, Dom(α) ≡ {x ∈ R, f(x) ̸= ∅}, the domain of α
and Ran(α) ≡ {y ∈ R, ∃x ∈ Dom(α) : y ∈ α(x)} then α is maximally decreasing iif it satisfies the implication
∀x, y ∈ R2:

∀(w, z) ∈ Gra(α) : (x− w)(z − y) ≥ 0 =⇒ (x, y) ∈ Gra(α).

7One can naturally define the integral of maximally monotone operators as the integral on continuous points.
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We rely on real-valued functional to extend those notations to random vectors. Given
a family of normed vector spaces (Eθ, ∥ · ∥)θ∈Θ and a family of random vectors (Xθ)θ ∈∏

θ∈Θ Eθ we will work on concentrations (for assumptions and results)8:

f(Xθ) ∈ αθ, θ ∈ Θ, f : Eθ → R, 1-Lipschitz.

that we will rather denote for simplicity:

X ∈ α.

This choice of notation is not ambiguous because in R, the concentration of Lipschitz
observation is equivalent to the concentration of the random variables themselves.

If, in addition, we are given a family of deterministic vectors (X̃θ)θ∈Θ ∈
∏

θ∈Θ Eθ such
that X ∈ α and9:

u(Xθ) ∈ u(X̃θ)± αθ, θ ∈ Θ, u : Eθ → R, linear, ∥u∥ ≤ 1,

then we denote:

X ∈ X̃ ± α,

and when there exists some family of positive parameters (σθ)θ∈Θ ∈ RΘ
+ such that

∥X̃∥ ≤ O(σ), we denote X ∈ O(σ)± α.
We denote Id, the identity operator t 7→ {t}, and for simplicity, given a parameter

λ ∈ R and an operator α, α(λ Id) ≡ α ◦ (λ Id). The same way,
√
Id : t 7→ {

√
t}, it satisfies

Dom(
√
Id) ⊂ R+. Given two operators α, β : R→ 2R, the parallel sum and product of α

and β are respectively denoted α⊞β = (α−1+β−1)−1 and α⊠β = (α−1 · β−1)−1 (where
the inverse of an operator α is classically defined as α−1 : y 7→ {x | y ∈ α(x)}).

Setting

By default, the sets of matrices Mp,n (in particular Dn ⊂ Mn), p, n ∈ N are endowed
with Hilbert-Schmidt norms ∥·∥HS and the sets of random vectors Rp, p ∈ N are endowed
with the ℓ2 norm.

In what follows, we consider a constant γ > 0 and introduce:

Θγ ≡ {(n, p, z) ∈ N2 ×H, n ≥ γp}.

the index set that will direct our quasi-asymptotic results. With the notations we
introduced, γ ≤ O(1), there for seeing p, n as families of parameters indexed with Θγ ,
one has p ≤ O(n).

Considering a family of random matrices X = (X(n,p))(n,p)∈Θγ
, given i ∈ N, let us

naturally denote xi ≡ (x
(n,p)
i )(n,p)∈Θγ ,n≥i, the family of the ith column of X and recall

the family of means, of centered and non-centered empirical covariance matrices for all
i ∈ N:

Σi ≡ E[xix
T
i ].

8That means that there exists some constants C, c > 0 such that ∀θ ∈ Θ for all 1-Lipschitz mappings
f : Eθ → R:

∀t ≥ 0 : P(|f(Xθ)− f(X′
θ)| ≥ t) ≤ Cαθ(ct),

9that means that there exist some constants C, c > 0 such that ∀θ ∈ Θ for all linear form u : Eθ → R such
that ∥u∥ ≤ 1:

∀t ≥ 0 : P(|u(Xθ − X̃θ)| ≥ t) ≤ Cαθ(ct).
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Assumptions

Let us assume the following properties are satisfied:

(A1) xi, . . . , xn are independent,

(A2) there exists some concentration function α ∈ MP+
(independent with n, p) and a

sequence η ∈ RN+ such that:

xi ∈ α ◦
(
Id

η

)
, i ∈ N X ∈ α ◦

(
Id√
nη

)
, O(1) ≤ η ≤ O(

√
p),

(A3) ∥Σi∥ ≤ O(1), i ∈ [n].

Later, one will have to make one further assumption on the existence of moments of α,
depending on the result (Assumption (A4.a) and (A4.b)).

3.2 First concentration results and general strategy

Concentration of the resolvent

It is somehow convenient to study simultaneously the so-called “co-resolvent” Q̌ defined
as:

Q̌z =

(
In − 1

zn
XTX

)−1

∈
∏

(n,p)∈Θγ ,ℑ(z)∈(0,1]

Mp,n.

Lemma 2.3 already provided the bounds:

∥Qz∥ ≤ |z|
ℑ(z)

≤ O(1) and ∥Q̌z∥ ≤ O (1) (3.1)

(since in our regime: O(1) ≤ ℑ(z) ≤ |z| ≤ O(1)). Further note that the identity
Q 1

znXXT = Q− Ip provides:

∥∥∥∥ 1nQzX

∥∥∥∥ ≤ |z|√
n

√∥∥∥∥ 1

zn
QzXXTQz

∥∥∥∥ ≤ |z|√
n

√
∥(Qz)2 −Qz∥ ≤ O

(
1√
n

)
(3.2)

Proposition 3.1. Qz, Q̌z ∈ α(
√
n Id).

Proof. Introducing the mappings Q : Mp,n → Mp and Q̌ : Mp,n → Mn defined as:

Q(M) =

(
Ip −

MMT

zn

)−1

and Q̌(M) =

(
In − MTM

zn

)−1

,

it is sufficient to show that Q and Q̌ are both O(1/
√
nℑ(z)2)-Lipschitz (for the Hilbert-

Schmidt norm). For any M ∈ Mn,p and any H ∈ Mp,n, we can bound:∥∥∥dQ|M ·H
∥∥∥
HS

=

∥∥∥∥Q (M)
1

zn
(MHT +HMT )Q (M)

∥∥∥∥
HS

≤ O

(
∥H∥HS√

n

)
,

thanks to (3.1) and (3.2). The same holds for Q̌z.

We also provide here the expression of the concentration of QX and XT Q̌ that will
be useful later.

Lemma 3.2. QzX = XQ̌z ∈ α
(
ℑ(z)2 Id

)
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Proof. Let us look at the variations of the mapping R : Mp,n → Mp,n(C) defined as:

R(M) =

(
Ip −

MMT

zn

)−1

M.

to show the concentration of QzX = R(X). For all H,M ∈ Mp,n (and with the notation

Q(M) =
(
Ip − MMT

zn

)−1

given in the proof of Proposition 3.1), let us bound:

∥∥∥dR|M ·H
∥∥∥
HS

≤
∥∥∥∥Q (M)

1

zn
(MHT +HMT )Q (M)M

∥∥∥∥
HS

+ ∥Q (M)H∥HS ≤ O (∥H∥HS) .

Strategy to approach the expectation of the resolvent

Once Proposition 3.1 is set, Lemma A.6 provides the concentration around the expecta-
tion (since α has the first moment bounded):

Qz ∈ E[Qz]± α(
√
n Id) (in Hilbert Schmidt norm).

We are then left to bound ∥E[Qz]− Q̃Λ̃z∥∗ and ∥E[Qz]− Q̃Λ̃z∥HS to be able to set concen-
tration around our deterministic equivalent thanks to Lemma A.3. It seems difficult to
prove this result straightforwardly, one will rather rely on two proxies for Λ̃z (namely
Λ̌ and Λ̂) to progressively approach Q̃Λ̃z

from E[Qz]. To identify these proxies let us
consider a certain deterministic diagonal matrix ∆ ∈ Dn(H) and express the difference:

E [Qz]− Q̃∆ = E

[
Qz

(
1

nz
XXT − Σ∆

)
Q̃∆

]
=

1

n

n∑
i=1

E

[
Qz

(
xix

T
i

z
− Σi

∆i

)
Q̃∆

]
.

To pursue the estimation of the expectation, one needs to control the dependence
between Qz and xi. For that purpose, recall the Schur identity given in (2.7) 1

zQ
zxi =

Qz
−ixi

Λz
i

, where we also recall that ∀i ∈ [n]: Λz
i ≡ z − 1

nx
T
i Q

z
−ixi. It is then possible to

express:

E [Qz]− Q̃∆ =
1

n

n∑
i=1

E

[
Qz

−i

(
xix

T
i

Λz
i

− Σi

∆i

)
Q̃∆

]
+

1

n

n∑
i=1

E

[
(Qz

−i −Qz)
Σi

∆i
Q̃∆

]

=
1

n

n∑
i=1

ε∆i + δ∆i , (3.3)

where we introduced, for any i ∈ N, ∆ ∈ Dn(H) the matrices ε∆i , δ
∆
i defined as:

• ε∆i = E
[
Qz

−ixix
T
i

(
1
Λz

i
− 1

∆i

)
Q̃∆
]

• δ∆i = 1
∆E

[
(Qz

−i −Qz)ΣiQ̃
∆
]
.

It can be shown easily that the matrix δ∆i (when ℑ(∆) > 0) is of small size:

Lemma 3.3.

∥δ∆i ∥ ≤ O

(
1

nℑ(z)4ℑ(∆)

)
This result is a consequence of Lemma 2.3 that provides the bound ∥Q̃∆∥ ≤ O (1) and

thanks to the following result:

Page 16/29



Operations & concentration

Lemma 3.4. ∥E[Qz
−i]− E[Qz]∥ ≤ O

(
1

nℑ(z)3

)
.

This Lemma relies on the formula:

Qz −Qz
−i =

1

nΛz
i

Qz
−ixix

T
i Q

z
−i (3.4)

consequence to the Schur identities (2.7). Naturally one then want to look for upper
bounds on 1

Λz . That can be obtained through two ways. The first one relies on the
identity: (3.1) to express:

1

Λz
= Diagi∈[n]

(
1

z − 1
nx

T
i Q

z
−ixi

)
=

1

z
Diagi∈[n]

(
1 +

1
nx

T
i Q

z
−ixi

z − 1
nx

T
i Q

z
−ixi

)

=
1

z

(
In +

1

zn
Diag(XTQzX)

)
= Diag

(
1

z
In +

1

nz
XTXQ̌z

)
=

1

z
Diag(Q̌z). (3.5)

The second one relies on the inequality |Λz
i | =

|zΛz
i |

|z| ≥ ℑ(zΛz
i )

|z| and the identity:

ℑ(Λz
i ) = ℑ(z)− xT

i ℑ(Qz
−i)xi = ℑ(z) + xT

i Q
z
−i

ℑ(z)
n|z|2

X−iX
T
−iQ̄

z
−ixi ≥ ℑ(z). (3.6)

Both bounds (3.5) and (3.6) can lead to:

Lemma 3.5. Λz ∈ Dn(H) and 1
Λz ≤ 1

ℑ(z) ≤ O (1).

We are now able to prove Lemma 3.4:

Proof of Lemma 3.4. For any deterministic vector u, v ∈ Cp, employing (3.4), let us
bound with Cauchy Schwarz inequality:

|u∗(E[Qz
−i]− E[Qz])v| = 1

n

∣∣∣∣E [u∗Qz
−ixix

T
i Q

z
−iv

1

Λz
i

]∣∣∣∣
=

1

n

√
E

[
u∗Qz

−ixixT
i Q̄

z
−iu

∣∣∣∣ 1Λz
i

∣∣∣∣]E [v∗Q̄z
−ixixT

i Q
z
−iv

∣∣∣∣ 1Λz
i

∣∣∣∣]
=
√
E
[
u∗Qz

−iΣiQ̄z
−iu
]
E
[
v∗Q̄z

−iΣiQz
−iv
]
O

(
1

nℑ(z)

)
≤ O

(
1

nℑ(z)3

)
thanks to Lemmas 3.1 and 3.5.

Now that we know how to bound δ∆i for all i ∈ [n] and all ∆ ∈ Dn(H), we are left

to bound ε∆i = E
[
Qz

−ixix
T
i

(
1
Λz

i
− 1

∆i

)
Q̃∆
]

which seems possible if ∆ either takes the

values:

Λ̂z ≡ E[Λz] or Λ̌z ≡ 1

E[1/Λz]
.

We will see that both choice are relevant, but not used the same way if one tries to bound
the nuclear norm or the Hilbert Schmidt norm. The next two subsections will present
those two approaches —- the first one requires the second moment of α to be bounded,
the second one requires the fourth moment of α to be bounded.

Page 17/29



Operations & concentration

3.3 Convergence in nuclear norm when α has bounded second moment

This subsection relies on the supplementary assumption to (A1-3):

(A4.a)
∫
R+

tα(t)dt < ∞

The proof process follows the diagram:

Qz
−i Qz

Q̃Λ̌z

Q̃Λ̂z

Q̃Λ̃z

Λ̌z Λ̂z Λ̃z

Φ(Λ̂z) Φ(Λ̃z)

3.4

Λz

3.7 3.12 3.12

3.9 3.11

3.10 2.5

Reaching Λ̌z ≡ 1/E[1/Λz]

Lemma 3.6. Given any sequence of deterministic matrices A ∈
∏

(n,p)∈Θγ
Mp:

xT
i Q

z
−iAxi ∈ α ◦min

(
Id

η∥A∥HS
,

√
Id

η2∥A∥

)
⊂ α ◦

√
Id

η
√
p∥A∥

.

Proof. Note that E[xT
i Q

z
−iAxi] = Tr(ΣiE[Q

z
−i]A) and let us bound:∣∣xT

i Q
z
−iAxi − Tr(ΣiE[Q

z
−i]A)

∣∣
≤
∣∣xT

i Q
z
−iAxi − Tr(ΣiQ

z
−iA)]

∣∣+ ∣∣Tr(ΣiQ
z
−iA)− Tr(ΣiE[Q

z
−i]A)

∣∣ .
Therefore, the Hanson-Wright inequality provided in Theorem A.7 gives the existence of
some constants C, c > 0 such that for all θ ∈ Θγ , for all z ∈ H:

P
(∣∣xT

i Q
z
−iAxi − E[xT

i Q
z
−iAxi]

∣∣ ≥ t
)

≤ E
[
P

(∣∣xT
i Q

z
−iAxi − Tr(ΣiQ

z
−iA)]

∣∣ ≥ t

2
| X−i

)]
+ P

(∣∣Tr(ΣiQ
z
−iA)− Tr(ΣiE[Q

z
−i]A)

∣∣ ≥ t

2

)
≤ E

[
α ◦min

(
ct

η∥Qz
−iA∥HS

,

√
ct

η2∥Qz
−iA∥

)]
+ α

(
c
√
nt

η
√
n
√
|z|∥A∥

)
,

≤ α ◦min

(
Id

η∥A∥HS
,

√
Id

η2∥A∥

)
+ α

(
ct

η∥A∥

)

one can then conclude thanks to the inequality ∥A∥HS ≤ √
p∥A∥ and Lemma A.1.

We now have all the preliminary results to prove:

Proposition 3.7. When α has bounded second moment, one can bound:∥∥∥E[Qz]− Q̃Λ̌z
∥∥∥
∗
≤ O (η

√
p)
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Proof. Let us consider a deterministic matrix A ∈ Mp, such that ∥A∥ ≤ 1. With the
notation introduced to set (3.3), we can decompose:

Tr
(
A
(
E [Qz]− Q̃Λ̌z

))
=

1

n

n∑
i=1

Tr(AεΛ̌
z

i ) + Tr(AδΛ̌
z

i )

First the term with δΛ̌
z

i can be bounded with Lemma 3.3:

|Tr(AδΛ̌
z

i )| ≤ O

(
p∥A∥
n

)
≤ O(1)

Second, let us estimate:

∣∣∣Tr(AεΛ̌
z

i )
∣∣∣ = ∣∣∣∣E [(xT

i Q̃
Λ̌z

AQz
−ixi − E[xT

i Q̃
Λ̌z

AQz
−ixi]

) 1

Λz
i

]∣∣∣∣
≤ E

[∣∣∣xT
i Q̃

Λ̌z

AQz
−ixi − E[xT

i Q̃
Λ̌z

AQz
−ixi]

∣∣∣]O (1) .

The integration of the concentration:

xT
i Q̃

Λ̌z

AQz
−ixi ∈ α ◦

(√
Id

η
√
p∥A∥

)

provided by Lemma 3.6 leads to
∣∣∣Tr(AεΛ̌

z

i )
∣∣∣ ≤ O

(
η
√
p∥A∥

)
thanks to Lemma A.2 and

the hypothesis η ≤ O(
√
p). Combining the bounds on δΛ̌

z

i and the bounds on εΛ̌
z

i for
i ∈ [n] (the bounding constants are the same), one finally obtains the result of the
proposition.

Reaching Λ̂z ≡ E[Λz]

Let us now go from Λ̌z ≡ 1/E[1/Λz] to:

Λ̂z ≡ E[Λz] ∈ Dn(C),

Applying Lemma 3.6 in the case A ≡ Ip one gets:

Lemma 3.8. ∀i ∈ [n] : Λz
i ∈ Λ̂z

iα ◦
(√

n Id
η
√
p

)
.

Lemma 3.9.
∥∥∥ 1
Λ̌z − 1

Λ̂z

∥∥∥ ≤ O
(

η
√
p

n

)
.

Proof. We know from (3.6) that 1
Λz

i
, 1
E[Λz

i ]
≤ O(1), the concentration given by Lemma 3.8

then allows us to bound:∣∣∣∣E [ 1

Λz
i

]
− 1

E[Λz
i ]

∣∣∣∣ ≤ E [∣∣∣∣ 1Λz
i

− 1

E[Λz
i ]

∣∣∣∣] ≤ E [ |Λz
i − E[Λz

i ]|
|Λz

iE[Λ
z
i ]|

]
≤ O (E[|Λz

i − E[Λz
i ]|]) ≤ O

(
η
√
p

n

)
.
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Finally reaching Λ̃z

To show the convergence of Λ̂z towards Λ̃z solution to Λ̃z = Φ(Λ̃z), we need Propo-
sition B.8 bounding the distance to a fixed point of a contracting mapping for the
semi-metric dH.

Lemma 3.10. ∥Φ(Λ̂z)− Λ̂z∥ ≤ O
(

η
√
p

n

)
.

Proof. Let us bound:

|Φ(Λ̂z)i − Λ̂z
i | =

∣∣∣∣E [ 1n Tr(ΣiQ̃
Λ̂z

)− 1

n
xT
i Q

z
−ixi

]∣∣∣∣ = 1

n

∣∣∣Tr(Σi(Q̃
Λ̂z

− E[Qz
−i])

)∣∣∣
≤ O

(
1

n
∥Q̃Λ̂z

− Q̃Λ̌z

∥∗ +
1

n
∥Q̃Λ̌z

− E[Qz]∥∗ +
1

n
∥E[Qz]− E[Qz

−i]∥∗
)
.

One can then conclude thanks to Lemmas 3.4, Proposition 3.7 and the bound:

∥Q̃Λ̂z

− Q̃Λ̌z

∥∗ = sup
∥A∥≤1

∥∥∥∥∥Tr
(
AQ̃Λ̌z 1

n

n∑
i=1

(
E

[
1

Λz
i

]
− 1

Λ̂z
i

)
Q̃Λ̂z

)∥∥∥∥∥ (3.7)

≤ O

(
p sup
i∈[n]

∣∣∣∣∣E
[
1

Λz
i

]
− 1

Λ̂z
i

∣∣∣∣∣
)

≤ O

(
p3/2η

n

)
,

thanks to Lemma 3.9. One then conclude thanks to the bounds p3/2

n2 , p
n2 ≤

√
p

n .

We now have all the elements to show the convergence of Λ̂z to Λ̃z.

Proposition 3.11. ∥Λ̂z − Λ̃z∥ ≤ O
(

η√
n

)
Proof. We know from Lemma 2.4 that supi∈[n] ℑ(Λ̃z

i ) ≤ ∥Φ(Λ̃z)∥ ≤ O(1), then Proposi-
tion 2.2 provides:

dH(Φ
z(Λ̃z),Φz(Λ̂z)) ≤

√√√√(1− ℑ(z)
supi∈[n] ℑ(Λ̃z

i )

)(
1− ℑ(z)

supi∈[n] ℑ(Λ̂z
i )

)
dH(Λ̃

z, Λ̂z)

≤ λdH(Λ̃
z, Λ̂z),

with 1 − λ ≥ O(1). Moreover, Lemma 3.10 and the bounds ℑ(Φz(Λ̂z)),ℑ(Λ̂z) ≥ ℑ(z)
provide:

dH(Φ
z(Λ̂z), Λ̂z) ≤ o(1) and consequently: dR∗

+
(ℑ(Φz(Λ̂z)),ℑ(Λ̂z)) ≤ o(1)

(recall that by assumption η ≤ o(
√
p) ≤ o(

√
n)). The conditions of Proposition B.8 are

satisfied and one can finally set that:

dH(Λ̂
z, Λ̃z) ≤ O

∥∥∥∥∥∥ Λ̂z − Φ(Λ̂z)√
ℑ(Λ̂z)ℑ(Λ̃z)

∥∥∥∥∥∥
 ≤ O

(
η
√
p

n

)

Then, recalling that ∀i ∈ [n], ℑ(Λ̂z
i ) ≥ O(1) and from Lemma 2.4 that ℑ(Λ̃z

i ) ≤ O(1), one
can bound:

∀i ∈ [n] :

√
ℑ(Λ̂z

i )

ℑ(Λ̃z
i )

≤

√
ℑ(Λ̃z

i )

ℑ(Λ̂z
i )

+ dR∗
+
(ℑ(Λ̂z),ℑ(Λ̃z)) ≤ O(1),
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which implies that ℑ(Λ̂z
i ) ≤ O(1). One then has all the elements to conclude that:

∥Λ̂z − Λ̃z∥ ≤ O
(
dH(Λ̂

z, Λ̃z)
)
≤ O

(
η
√
p

n

)

Similar calculus as the one done in (3.7) to deduce a bound ∥Q̃Λ̂z − Q̃Λ̌z∥∗ from a
bound on ∥Λ̂z − Λ̌z∥ then leads to:

Proposition 3.12 (Convergence in nuclear norm).
∥∥∥E [Qz]− Q̃Λ̃z

∥∥∥
∗
≤ O

(
p3/2η

n

)
.

Finally Lemma A.3 allows us to combine this result with the concentration of Qz

given in Proposition 3.1 to finally obtain the first result of Theorem 1.3.

3.4 Convergence in the HS norm when α has bounded fourth moment

This subsection relies on the supplementary assumption to (A1-3):

(A4.b)
∫
R+

t3α(t)dt < ∞

The proof process for this section is shown in the following diagram.

Qz
−i Qz

Q̃Λ̂z

Q̃Λ̃z

Λ̂z Λ̃z

Φ(Λ̂z) Φ(Λ̃z)

Λz

3.14 ??

??

?? 2.5

Recall that Λ̂ ≡ E[Λ], we will demonstrate that the distance between E[Qz] and Q̃Λ̂z

in
Hilbert Schmidt norm is 1/n better than in the nuclear norm. The proof follows generally
the same structure as that of Proposition 3.7. To get the best bound possible, one needs
a refined version of Lemma 3.6.

Lemma 3.13. Given any sequence of deterministic matrices A ∈
∏

(n,p)∈Θγ
Mp:

xT
i AQzxi ∈ α ◦min

(
Id

η∥A∥HS
,

√
Id

η2∥A∥

)
⊂ α ◦

√
Id

η2∥A∥HS
.

Note that outside from the heavy-tailed case, in the specific case where the concen-
tration of X is the same as xi one can use the concentration of Qzxi = QzXei provided in
Lemma 3.2 to employ directly Hanson-Wright theorem and set the result of Lemma 3.13.

Proof. The proof is slightly more elaborate than the proof of Lemma 3.6 because xi is not
independent with Qz. Still, it follows the same scheme and starts with the decomposition:∣∣xT

i AQzxi − E[xT
i AQzxi]

∣∣
≤
∣∣xT

i AQzxi − E[xT
i AQzxi|X−i]

∣∣+ ∣∣E[xT
i AQzxi|X−i]− E[xT

i AQzxi]
∣∣ .
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Observe that xi ∈ α(Id /η) and when X−i is fixed, xi 7→ Qzxi is o(1)-Lipschitz thanks to
the bound ∥Qz∥ ≤ |z|

ℑ(z) . One can therefore employ Hanson-Wright inequality given in

theorem A.7 and obtain the existence of some constants C, c > 0 such that ∀(n, p) ∈ Θγ :

P
(∣∣xT

i AQzxi − E[xT
i AQzxi|X−i]

∣∣ ≥ t
)
≤ Cα ◦min

(
c Id

ηp∥A∥HS
,

√
c Id

η2p∥A∥

)

To control the second part, we introduce for any i ∈ [n] the following mapping:

q−i : M−i → E[xT
i AQzxi|X−i = M−i]

Note that q−i is defined on the set of matrices of Mp,n that have only zeros in the ith

column. Given such M−i,M
′
−i ∈ Mp,n and xi ∈ Rp, we denote below:

M = (m1, . . . ,mi−1, xi,mi+1, . . . ,mn) and M ′ = (m′
1, . . . ,m

′
i−1, xi,m

′
i+1, . . . ,m

′
n),

such that now, with the notation Q : M 7→
(
Ip − MMT

zn

)−1

already introduced in the proof

of Proposition 3.1, one has the identities q−i(M−i) = E[xT
i AQ(M)xi] and q−i(M

′
−i) =

E[xT
i AQ(M ′)xi]. Then:

∥q−i(M−i)− q−i(M
′
−i)∥HS

=
∣∣E[xT

i A(Q(M)−Q(M ′))xi]
∣∣

=

∣∣∣∣E [xT
i AQ(M)

(
1

zn
M−iM

T
−i −

1

zn
M ′

−iM
′
−i

T

)
Q(M ′)xi

]∣∣∣∣
≤
∣∣∣∣E [xT

i AQ(M)

(
1

zn
M−i(M

T
−i −M ′

−i
T ) +

1

zn
(M−i −M ′

−i)M
′
−i

T

)
Q(M ′)xi

]∣∣∣∣
By symmetry, it is sufficient to bound one of the two terms, it is done with Cauchy-
Schwarz inequality:

1

n

∣∣E [xT
i AQ(M)M−i(M−i −M ′

−i)
TQ(M ′)xi

]∣∣
≤

√
E

[
xT
i A

Q(M)M−i

n

M∗
−iQ(M)∗

n
ATxi

]√
E
[
xT
i Q(M ′)∗|M−i −M ′

−i|2Q(M ′)xi

]
≤ 1√

n
O
√
E[xT

i AATxi]
√
E[xT

i |M−i −M ′
−i|2xi] ≤ O

(
∥A∥HS∥Σi∥√

n

)
∥M−i −M ′

−i∥HS

Therefore, q−i is O
(

∥A∥HS√
n

)
-Lipschitz and, as in the proof of Lemma 3.6, Theorem A.7

provides the existence of some constants C, c > 0 such that for all θ ∈ Θγ , for all z ∈ H:

P
(∣∣xT

i AQzxi − E[xT
i AQzxi]

∣∣ ≥ t
)

≤ E
[
P

(∣∣xT
i AQzxi − E[xT

i AQzxi|X−i]
∣∣ ≥ t

2

)]
+ P

(
|q−i(X−i)− E[q−i(X−i)]| ≥

t

2

)
≤ E

[
α ◦min

(
ct

η∥A∥HS
,

√
ct

η2∥A∥

)]
+ α

(
c
√
nt

η
√
n∥A∥HS

)
one can then conclude.

The bound on the fourth moment of α given by (A4.b) is only useful to set next
proposition:

Proposition 3.14. ∥E[Qz]− Q̃Λ̂z∥HS ≤ O
(

η3√p

n

)
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Proof. Let us consider a deterministic matrix A ∈ Mp, such that ∥A∥HS ≤ 1. With the
notation introduced to set (3.3) we can decompose:

Tr
(
A
(
E [Qz]− Q̃Λ̂z

))
=

1

n

n∑
i=1

Tr(AεΛ̂
z

i ) + Tr(AδΛ̂
z

i )

The bound on δΛ̌
z

i is again obtained with Lemma 3.3:

|Tr(AδΛ̂
z

i )| ≤ O

(√
p∥A∥HS

nℑ(z)5

)
Second, let us estimate:

|Tr(AεΛ̂
z

i )| =
∣∣∣∣ 1

E[Λz
i ]
E
[
xT
i Q̃

E[Λz ]AQxi (Λ
z
i − E [Λz

i ])
]∣∣∣∣

=

∣∣∣∣ 1

E[Λz
i ]
E
[(

xT
i Q̃

E[Λz ]AQzxi − E
[
xT
i Q̃

E[Λz ]AQzxi

])
(Λz

i − E[Λz
i ])
]∣∣∣∣

Lemma A.5 applied to the concentration provided in Lemmas 3.8 and 3.13 allows us to set
(the distribution of the composition towards the parallel product is given by Lemma A.4):

(
xT
i Q̃

E[Λz ]AQz
−ixi − E

[
xT
i Q̃

E[Λz ]AQzxi

])
(Λz

i − E[Λz
i ]) ∈ α ◦

(√
Id

η2∥A∥HS
⊠

√
n Id

η
√
p

)

∈ α ◦

((
n Id

η3
√
p∥A∥HS

) 1
4

)

A simple integration then provides
∣∣∣Tr(AεΛ̂

z

i )
∣∣∣ ≤ O

(
η3√p∥A∥HS

n

)
.

Combining the bounds on δ̂i and the bounds on εi for i ∈ [n] (the bounding constants
are the same), one finally obtains both result of the proposition (take the supremum on
all A ∈ Mp such that such that ∥A∥HS ≤ 1 to get a bound on ∥Qz − Q̃Λ̂z∥HS).

The rest of the study is then exactly the same as in Subsection 3.3, we thus give the
next results without proof.

Proposition 3.15. ∥Λ̂z − Λ̃z∥ ≤ O
(
ηp
n2

)
Proposition 3.16 (Convergence in HS norm).

∥∥∥E [Qz]− Q̃Λ̃z
∥∥∥
HS

≤ O
(

η
√
p

n

)
.

One can then combine this result with Proposition 3.1 and Lemma A.3 to finally set
the second result of Theorem 1.3.

A Concentration functions and inequalities

Lemma A.1. Given two family of positive parameters σ, η ∈ RΘ
+ such that η ≤ O(σ) and

a concentration function α ∈ MΘ
P+

such that α(1) ≥ O(1), for all parameters 0 < q ≤ r:

α

((
Id

η

)r)
⊂ α

((
Id

σ

)q)
.

Proof. By definition of our notations, one knows that there exists c > 0 such that ∀θ ∈ Θ,
ηθ ≤ cσθ. Then it is immediate to check that for all θ ∈ Θ, ∀t ≥ 0:

α

((
Id

η

)r)
⊂ α

(
(1/c)r

(
Id

σ

)r)
.
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To set that α(
(
Id
σ

)r
) ⊂ α(

(
Id
σ

)q
), let us consider θ ∈ Θ and start with the equivalence:

α

((
t

σθ

)r)
≤ α

((
t

σθ

)q)
⇐⇒ t ≥ σθ.

Besides, for all θ ∈ Θ and all t < σθ:

min

(
1, α

((
t

σθ

)r))
≤ 1 ≤ 1

α(1)
α

((
t

σθ

)q)
.

Therefore, for any θ ∈ Θ, any t ≥ 0:

min

(
1, α

((
t

σθ

)r))
≤ 1

min(1, C)
α

((
t

σθ

)q)
.

Lemma A.2. Given a concentration function α ∈ MP+
(independent of θ), a family of

parameters σ ∈ RΘ
+ and a family of random variables X ∈ RΘ such that X ∈ 0±α◦(Id /σ):

∀r > 0 :

∫
tr−1α(t)dt ≤ ∞ ⇐⇒ E[|X|r] ≤ O(σr).

Proof. There exists C, c > 0 such that for all θ ∈ Θ, P(|Xθ| ≥ t) ≤ Cα
(

ct
σθ

)
one can then

simply bound ∀θ ∈ Θ:

E[|Xθ|r] =
∫ ∞

0

P(|Xθ|r ≥ t)dt ≤
∫ ∞

0

Cα

(
ct1/r

σθ

)
dt ≤ Crσr

θ

∫ ∞

0

tr−1α (ct) dt.

Lemma A.3. Given a family of normed vector space (Eθ)θ∈Θ, a family of random vectors
X ∈ EΘ, two families of deterministic vectors X̃1, X̃2 ∈ EΘ a family of parameters
σ ∈ RΘ, and a concentration function (constant with θ ∈ Θ) α ∈ MP+

, we have the
following implication:

X ∈ X̃1 ± α ◦
(
Id

σ

)
and ∥X̃1 − X̃2∥ ≤ O(σ) =⇒ X ∈ X̃2 ± α ◦

(
Id

σ

)
Lemma A.4. Given three operators f, g, h : R→ 2R:

f ◦ g ⊞ f ◦ h = f ◦ (g ⊞ h) and f ◦ g ⊠ f ◦ h = f ◦ (g ⊠ h).

Lemma A.5. Given two families of random variables X,Y ∈ RΘ and two family of
concentration functions α, β ∈ MΘ

P+
:

X ∈ 0± α and Y ∈ 0± β =⇒ XY ∈ 0± α⊠ β

Lemma A.6. Given a concentration functions α ∈ MP+
and a family of random variables

X ∈ RΘ:

X ∈ α =⇒ X ∈ E[X]± α.

Theorem A.7 (Hanson-Wright Theorem). Let us consider a family of random vectors
X ∈

∏
θ∈ΘR

pθ , a family of parameters σ ∈ RΘ
+ and a concentration functions α ∈ MP+

.
If we assume that X ∈ α ◦ (Id /σ) and E[XXT ] ≤ O(σ2), then for any sequence of
deterministic matrices A ∈

∏
θ∈Θ∈NMpθ

:

XTAY ∈ α ◦min

(
Id

∥A∥HSσ2
,

√
Id

∥A∥σ2

)
.
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B Semi metric on Dn(H)

We introduce the semi-metric dH on Dn(H) = {D ∈ Dn,∀i ∈ [n],ℑDi > 0}:

dH(∆,∆′) = sup
1≤i≤n

|∆−∆′|√
ℑ(∆)ℑ(∆′)

The distance dH is not a metric because it does not satisfy the triangular inequality,
see the following counter-example:

dH(4i, i) =
3

2
>

1√
2
+

1√
2
= dH(4i, 2i) + dH(2i, 1i)

Indeed, one has the counter-triangular inequality when certain conditions are met:

Lemma B.1. Given x, y, z ∈ R, x < y < z implies that:

d2H(a+ xi, a+ zi) > d2H(a+ xi, a+ yi) + d2H(a+ yi, a+ zi)

Proof. Here we construct the function

g : y → (y − x)2

xy
+

(z − y)2

yz

and we differentiate it twice to get:

g′(y) =
y2 − x2

xy2
+

y2 − z2

y2z
=

1

x
− x

y2
+

1

z
− z

y2

g′′(y) =
3y

x3
+

3z

x3
> 0

This shows that g is strictly convex on [x, z], and the statement follows from the fact that
g(x) = g(z) = d2H(a+ xi, a+ yi) and that g(y) = d2H(a+ xi, a+ yi) + d2H(a+ yi, a+ zi)

Lemma B.2. Given ∆,∆′ ∈ Dn(H) and Λ ∈ D+
n

dH(Λ∆,Λ∆′) = dH(∆,∆′)

dH(−∆−1,−∆′−1) = dH(∆,∆′)

Lemma B.3. Given four diagonal matrices ∆,∆′, D,D′ ∈ Dn(H) :

dH(∆ +D,∆′ +D′) ≤ max(dH(∆,∆′), dH(D,D′))

Proof. For any ∆,∆′, D,D′ ∈ Dn(H) :, there exist i0 ∈ [n] such that:

dH(∆ +D,∆′ +D′) =
|λi0 − Λ′

i0
+Di0 −D′

i0
|√

ℑ(∆i0 +Di0)ℑ(∆′
i0
+D′

i0
)

≤
|λi0 − Λ′

i0
|+ |Di0 −D′

i0
|2√

ℑ(∆i0)ℑ(∆′
i0
) +

√
ℑ(Di0)ℑ(D′

i0
)

≤ max

 |λi0 − Λ′
i0
|√

ℑ(∆i0)ℑ(∆′
i0
)
,

|Di0 −D′
i0
|√

ℑ(Di0)ℑ(D′
i0
)



In proving this property we have used the following elementary inequality results.
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Lemma B.4. Given four positive real numbers a, b, α, β:
√
ab+

√
αβ ≤

√
(a+ α)(b+ β)

a+ α

b+ β
≤ max(

a

b
,
α

β
)

Proof. For the first result, we deduce from the inequality 2
√
abαβ ≤ aβ + bα:

(
√
ab+

√
αβ)2 = ab+ αβ + 2

√
abαβ ≤ ab+ αβ + aβ + bα

For the second result, we simply bound:

a+ α

b+ β
=

a

b

b

b+ β
+

α

β

β

b+ β
≤ max

(
a

b
,
α

β

)
.

Proposition B.5. Given three parameters α, λ, θ > 0 and two mappings f, g :: Dn(H) →
Dn(H), λ-Lipschitz for the semi-metric dH, the mappings

−1

f
, αf, f ◦ g, and f + g

are also λ-Lipschitz for the semi-metric dH.

The Banach fixed point theorem states that a contracting function on a complete
space admits a unique fixed point. The extension of this result to contracting mappings
on Dn(H), for the semi-metric dH, is not obvious: first, because dH does not verify
the triangular inequality and second because the completeness needs to be proven.
The completeness is guaranteed by a boundedness condition that we impose on the
matrices. One can rely on the natural topology on Dn(H) endowed by any norm of the
finite dimension vector space Dn. Below the notion of closeness are introduced for this
topology.

Theorem B.6. Let us consider a closed10 subset Db ⊂ Dn(H) such that there exists δ > 0

satisfying: ∀∆ ∈ Db, ∀i ∈ [n] : ℑ(∆i) ≤ δ and a mapping f : Db → Db. If f is contracting
for the stable semi-metric dH on Db, then there exists a unique fixed point ∆∗ ∈ Db

satisfying ∆∗ = f(∆∗).

Proof. Let us denote λ ∈ (0, 1) the Lipschitz constant such that ∀∆,∆′ ∈ Dn(H), dH(f(∆), f(∆′)) ≤
λdH(∆,∆′). Then let us show that the sequence (∆(k))k≥0 satisfying ∆(0) ∈ Db and:

∀k ≥ 1 : ∆(k) = f(∆(k−1))

is a Cauchy sequence in Db. We can bound for any p ∈ N :

∥∆(p+1) −∆(p)∥ ≤ δdH(∆
(p+1),∆(p)) ≤ λpδdH(∆

(1),∆(0)).

Therefore, thanks to the triangular inequality in (Dn(H), ∥ · ∥), for any n ∈ N :

∥∆(p+n) −∆(p)∥ ≤ ∥∆(p+n) −∆(p+n−1)∥+ · · ·+ ∥∆(p+1) −∆(p)∥

≤ δdH(∆
(1),∆(0))

1− λ
λp → 0.

As a Cauchy sequence, (∆(p))p∈N converges to a diagonal matrix ∆∗ ≡ limp→∞ ∆(p) ∈ Db

which is closed thus complete in Dn(H). By contractivity of f , ∆∗ is clearly the unique
fixed point of f .

10say, as a subset of (Dn(C), ∥ · ∥).
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To set the two next result, one needs to introduce a semi-metric dR∗
+

analogous to dH
but defined on Dn(R

∗
+):

∀∆,∆′ ∈ Dn(R
∗
+) : dR∗

+
(∆,∆′) ≡

∥∥∥∥∆−∆′
√
∆∆′

∥∥∥∥ ,
it satisfies the same stability properties as dH depicted in Proposition B.5 and allows to
set the following elementary result.

Lemma B.7. Given three positive diagonal matrices Γ1,Γ2,Γ3 ∈ Dn(R+):∥∥∥∥ Γ3

√
Γ1

∥∥∥∥ ≤
∥∥∥∥ Γ3

√
Γ2

(1 + dR∗
+
(Γ1,Γ2))

∥∥∥∥ .
Proof. We simply bound for any i ∈ [n]:∣∣∣∣∣ Γ3

i√
Γ1
i

∣∣∣∣∣ ≤
∣∣∣∣∣ Γ3

i√
Γ2
i

∣∣∣∣∣+
∣∣∣∣∣∣
Γ3
i

(√
Γ2
i −

√
Γ1
i

)
√
Γ2
iΓ

1
i

∣∣∣∣∣∣ ≤
∣∣∣∣∣ Γ3

i√
Γ2
i

∣∣∣∣∣+
∣∣∣∣∣ Γ3

i√
Γ2
i

∣∣∣∣∣
∣∣∣∣∣∣ Γ2

i − Γ1
i√

Γ1
i

(√
Γ2
i +

√
Γ1
i

)
∣∣∣∣∣∣ .

Next we give the result to bound the distance between a diagonal matrix and the
other one which is obtained as a fixed point. The contractivity can be difficult to set on
the whole set, we will thus introduce a sufficient weaker condition. Given a mapping
Ψ : D(H) → D(H), and a diagonal matrix ∆ ⊂ D(H), we say that Ψ is “λ-Lipschitz from
∆̃” iif:

∀∆′ ∈ D(H) : dH(Ψ(∆̃),Ψ(∆′)) ≤ λdH(∆̃,∆′).

Proposition B.8. Let us consider a family of integers (nθ)θ∈Θ ∈ NΘ, and for all θ ∈
Θ, a mappings fθ : Dnm

(H) → Dnm
(H), λ-Lipschitz from a fixed point Γ̃θ = fθ(Γ̃θ)

and a family of diagonal matrices (Γθ)θ∈Θ) ∈
∏

θ∈Θ ∈ Dnm
(H)Θ. If one assumes that

dR∗
+
(ℑ(Γ),ℑ(f(Γ))) ≤ o(1), then

dH(Γ, Γ̃) ≤ O

∥∥∥∥∥∥ f(Γ)− Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥
 ,

Proof. Applying Lemma B.7 with Γ3 = f(Γ̃)−f(Γ)√
ℑ(f(Γ̃))

, Γ1 = ℑ(Γ) and Γ2 = ℑ(f(Γ))

dH(Γ, Γ̃) ≤

∥∥∥∥∥∥ Γ̃− f(Γ)√
ℑ(Γ)ℑ(Γ̃)

∥∥∥∥∥∥+
∥∥∥∥∥∥ f(Γ)− Γ√

ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥ =

∥∥∥∥∥∥ f(Γ̃)− f(Γ)√
ℑ(f(Γ̃))

√
ℑ(Γ)

∥∥∥∥∥∥+
∥∥∥∥∥∥ f(Γ)− Γ√

ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥
≤ dH

(
f(Γ̃), f(Γ)

)
(1 + dH(ℑ(Γ),ℑ(f(Γ)) +

∥∥∥∥∥∥ f(Γ)− Γ√
ℑ(Γ̃)ℑ(Γ)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ f(Γ)− Γ√
ℑ(Γ)ℑ(Γ̃)

∥∥∥∥∥∥ /(1− λ− λdH (ℑ(Γ),ℑ(f(Γ))) (B.1)

Now, we know that there exists a finite subset T ⊂ Θ such that ∀θ ∈ Θ\T : dH(ℑ(Γθ),ℑ(fθ(Γθ))) ≤
1−λ
2λ then one can conclude from (B.1) that for all ∀θ ∈ Θ \ T :

dH(Γθ, Γ̃θ) ≤
2

1− λ

∥∥∥∥∥∥ fθ(Γθ)− Γθ√
ℑ(Γ̃θ)ℑ(Γθ)

∥∥∥∥∥∥ ,
which can be generalized to any θ ∈ Θ with a constant C > 0 replacing 2

1−λ .
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