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Abstract

Starting from concentration of measure hypotheses on m random vectors
Z1, . . . , Zm, this article provides an expression of the concentration of functionals
φ(Z1, . . . , Zm) where the variations of φ on each variable depend on the product
of the norms (or semi-norms) of the other variables (as if φ were a product).
We illustrate the importance of this result through various generalizations of
the Hanson-Wright concentration inequality as well as through a study of the
random matrix XDXT and its resolvent Q = (Ip − 1

nXDXT )−1, where X and
D are random, which have fundamental interest in statistical machine learning
applications.
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Introduction

Among the various assumptions one could pose on random vectors Z1, . . . , Zm

to study the concentration of a functional φ(Z1, . . . , Zm) of limited variations
(on Z1, . . . , Zm), concentration of measure hypotheses provide flexible proper-
ties allowing one (i) to characterize a wide range of settings where, in particular,
the hypothesis of independent entries is relaxed, and (ii) to retrieve rich con-
centration inequalities with precise convergence bounds. The historical result
of concentration of measure theory was obtained on the uniform distribution on
the sphere by Lévy Lévy (1951) and later formalized by Milman and Gromov
Gromov and Milman (1983) who extended the approach to other families of dis-
tributions, notably involving isoperimetric inequalities and the Ricci curvature.
To present the simplest picture possible, we admit for the moment that what we
call “concentrated vectors” (or “Lipschitz concentrated vectors”) are transforma-
tions X = F (Z) ∈ Rp of a Gaussian vector Z ∼ N (0, Id) for a given 1-Lipschitz
(for the Euclidean norm) mapping F : Rd → Rp. This class of random vec-
tors originates from a core result of concentration of measure theory (Ledoux,
2005, Corollary 2.6) which states that, for any λ-Lipschitz mapping f : Rd → R

(where R
d and R are respectively endowed with the Euclidean norm ‖ · ‖ and

with the absolute value | · |),

∀t > 0 : P (|f(Z)− E[f(Z)]| ≥ t) ≤ Ce−(t/cλ)2 , (1)

where C = 2 and c =
√
2 (these constants do not depend on the dimensions d !).

Note here that the speed of concentration is proportional to the Lipschitz param-
eter of f . This implies in particular that the standard deviation of the random
variable f(Z) – called a “λ-Lipschitz observation of Z” – does not depend on
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the dimension d (if λ stays constant when d tends to ∞). We denote this prop-
erty succinctly as Z ∝ CE2(c) or, if we place ourselves in the quasi-asymptotic
regime where the dimension d (or p) is large, we do not pay attention to the
constants appearing in the exponential bound (as long as C, c ≤d→∞ O(1), the
result would not be much different) and we write instead Z ∝ E2.

We can then deduce a host of concentration inequalities on any observation
g(F (Z)) for g : Rp → R Lipschitz. If F is, say, σ-Lipschitz with σ possibly
depending on the dimension, we have the concentration X = F (Z) ∝ E2(σ).
This succinct notation (X ∝ E2(σ) is analogous to (1) with σ replacing c) only
displays the central quantity describing the concentration of X , namely, the “ob-
servable diameter of X”: O(σ). Indeed, the implicit concentration inequalities
constrain the standard deviations of any ν-Lipschitz observation of X to be of
order O(νσ).

The objective of this article is to go beyond the Lipschitz case and express,
with the help of our shorthand notation, the concentration of products of con-
centrated random vectors. As an illustrative exemple, let Y = X ◦ · · · ◦X

︸ ︷︷ ︸

m times

∈ Rp,

for a given product “◦” satisfying:

∀x1, . . . , xm ∈ R
p, ‖x1 ◦ · · · ◦ xm‖ ≤ ‖x1‖ · · · ‖xm‖. (2)

(◦ could for instance be the entry-wise product and the norm would be the
infinite norm). When E[X ] = 0, we will see in particular that

Y ∝ E2(p
m−1

2 σm) + E 2
m
(σm), (3)

where µ satisfies E[‖X‖] ≤ O(µ), which means in our framework that there
exist two constants C, c > 0 (independent of p) such that for any 1-Lipschitz
mapping f : Rp → R, ∀t > 0

P (|f(Y )− E[f(Y )]| ≥ t) ≤ C exp

(

−
(

t

cp
m−1

2 σm

)2
)

+ C exp

(

−
(

t

cσm

)2/m
)

.

We see here that the term E 2
m
(σm) in (3) controls the tail of the distribution of

f(Y ), but its first moments are controlled by the term E2(p
m−1

2 σm). Specifically,
its standard deviation is of order O(p

m−1
2 σm), the observable diameter of Y . In

a sense, the result is quite intuitive looking back at the algebraic inequality
(2): here E[‖X‖] ≤ O(

√
p) and the variations of Y are bounded by E[‖X‖]m−1

times the variation of X . This simple scheme generalizes to more elaborate
products of random vectors X1, . . . , Xm belonging to different normed vector
spaces, with Y possibly not a multilinear mapping of (X1, . . . , Xm) but still
satisfying an inequality similar to (2) (with semi-norms possibly replacing some
of the norms). The complete description of these possible settings is the central
result of this paper: Theorem 2.

As a simple, but fundamental, application of our main result, the article
then provides two Hanson-Wright inequalities expressing the concentration of
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XTAX , where A ∈ Mp and X is either a random vector of Rp or a random
matrix of Mp,n. The common approach to this problem is to consider random
vectors X = (X1, . . . , Xp) ∈ Rp with independent subgaussian entries, say Xi ∝
E2(K); under this setting, from Boucheron et al. (2013) (see also Vershynin
(2017)), we have the concentration:

XTAX ∝ E2(K2‖A‖F ) + E1(K2‖A‖) (4)

(where ‖ · ‖F is the Frobenius norm). Based on concentration of measure hy-
potheses (allowing for dependence between the entries), good concentration in-
equalities were already obtained in the case n = 1 in Vu and Wang (2014) (with
a term E2(

√
logn‖A‖F ) replacing E2(‖A‖F )) and then improved in Adamczak

(2015) to reach (4). We thus reprove this result in the context of Theorem 2
and even go further, looking at the concentration of XTAY and Y DXT for
D ∈ Mn, diagonal and X,Y ∈ Mp,n satisfying the concentrations X,Y,D ∝ E2
(as if they had i.i.d. entries following the law N (0, 1)). However, as explained
in Remark 8, unlike Vu and Wang (2014) and Adamczak (2015), we do not
take convex concentration hypotheses (issued from a well known result from
Talagrand) because Theorem 2 could not be proven in this setting1.

To illustrate our central result with more general products (when m = 3),
we study the concentration of XTDY where D ∈ Mn is a diagonal random
matrix and X,Y ∈ Mp,n are two random matrices, all satisfying X,D, Y ∝
E2. With the same random objects, to go beyond the multilinear case, we
look at the concentration of the resolvent Q = (Ip − 1

nXDXT )−1 studied in
Pajor and Pastur (2009); Guédon et al. (2014) but with a diagonal matrix D
possibly depending on X,Y . This setting appears in robust regression problems
El Karoui et al. (2013); Mai et al. (2019); Seddik et al. (2021). Although they
might seam restrictive, with the possibly complex dependencies between the
entries of xi they allow, concentration of measure hypotheses, are very light
compared to the classical Gaussian hypotheses adopted in large dimensional
statistics and statistical learning Huang (2017); Deng et al. (2020). To obtain
a good concentration of Q, one has to assume that the columns x1, . . . , xn of
X are all independent and that for all i ∈ [n], there exists a diagonal random
matrix D(i) ∈ Mn, not too far from D and independent with xi. We show then
under our realistic hypotheses that each of the linear observations u(Q) lie close
to u((Ip − 1

nXE[D]Y T )−1) that can be estimated with classical random matrix
theory results.

The remainder of the article is organized as follows. After rigorously setting a
probabilistic approach to the concentration of measure theory (I), we introduce
the class of linearly concentrated random vectors (II) and explain how their
norm can be controlled in generic normed vector spaces (III). We then briefly
discuss the fact that the random vector (X1, . . . , Xm) (as a whole) is not always

1A result analog to Theorem 2 can be proven in convex concentration setting and for the
entry wise product in Rp or the matrix product in Mp,n but this not the purpose of the
present article.
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concentrated if one only assumes that each of the Xi’s, i ∈ [m], is concentrated
(IV). This provides us with the ingredients to establish the concentration of
φ(X1, . . . , Xm) in Theorem 2, the core result of the article, and to provide a
first set of elementary consequences (V). As an application of Theorem 2, we
next provide a generalization of the Hanson-Wright theorem (VI). Then we end
the article with a study of the concentration of XDY T (VII) and the resolvent
Q = (Ip − 1

nXDXT )−1 (VIII).

1. Basics and notations of the concentration of measure framework

To discuss concentration of measure, we choose here to adopt the viewpoint
of Levy families where the goal is to track the influence of the vector dimension
over the concentration. Specifically, given a sequence of random vectors (Zp)p≥N

where each Zp belongs to a space of dimension p (typically Rp), we wish to obtain
inequalities of the form:

∀p ∈ N, ∀t > 0 : P (|fp(Zp)− ap| ≥ t) ≤ αp(t), (5)

where, for every p ∈ N, αp : R+ → [0, 1] is called a concentration function: it
is left-continuous, decreasing, and tends to 0 at infinity; fp : Rp → R is a 1-
Lipschitz function; and ap is either a deterministic variable (typically E[fp(Zp)])
or a random variable (for instance fp(Z

′
p) with Z ′

p an independent copy of Zp).
The sequences of random vectors (Zp)p≥0 satisfying inequality (5) for all se-
quences of 1-Lipschitz functions (fp)p≥0 are called Levy families or more simply
concentrated vectors (with this denomination, we implicitly omit the dependence
on p and abusively call “vectors” the sequences of random vectors of growing
dimension).

Concentrated vectors admitting an exponentially decreasing concentration
function αp are extremely flexible objects. We dedicate the next two subsections
to further definitions of the fundamental notions involved under this setting.
These are of central interest to the present article – this approach is primarily
inspired by the Gaussian fundamental example satisfying (1).

Our main interest is in two classes of concentrated vectors, characterized by
the regularity of the class of admissible sequences of functions (fp)p∈N satisfying
(5). When (5) holds for all the 1-Lipschitz mappings fp, Zp is said to be Lipschitz
concentrated ; when true for all 1-Lipschitz linear mappings fp, Zp is said to be
linearly concentrated (the convex concentration, not studied here, occurs when
(5) is satisfied for all 1-Lipschitz convex mappings fp Vu and Wang (2014)).
As such, the concentration of a random vector Zp is only defined through the
concentration of what we refer to as its “observations” fp(Zp) for all fp in a
specific class of functions.

We will work with normed (or semi-normed) vector spaces, although concen-
tration of measure theory is classically developed in metric spaces. The presence
of a norm (or a semi-norm2) on the vector space is particularly important when

2A semi-norm becomes a norm when it satisfies the implication ‖x‖ = 0 ⇒ x = 0.

5



establishing the concentration of a product of random vectors.

Definition/Proposition 1. Given a sequence of normed vector spaces (Ep, ‖ ·
‖p)p≥0, a sequence of random vectors3 (Zp)p≥0 ∈ ∏p≥0 Ep, a sequence of pos-

itive reals (σp)p≥0 ∈ RN
+ and a parameter q > 0, we say that Zp is Lipschitz

q-exponentially concentrated with observable diameter of order O(σp) iff one of
the following three equivalent assertions is satisfied:4

• ∃C, c > 0 | ∀p ∈ N, ∀ 1-Lipschitz f : Ep → R, ∀t > 0 :

P
(∣
∣f(Zp)− f(Z ′

p)
∣
∣ ≥ t

)
≤ Ce−(t/cσp)

q

,

• ∃C, c > 0 | ∀p ∈ N, ∀ 1-Lipschitz f : Ep → R, ∀t > 0 :

P (|f(Zp)−mf | ≥ t) ≤ Ce−(t/cσp)
q

,

• ∃C, c > 0 | ∀p ∈ N, ∀ 1-Lipschitz f : Ep → R, ∀t > 0 :

P (|f(Zp)− E[f(Zp)]| ≥ t) ≤ Ce−(t/cσp)
q

,

where Z ′
p is an independent copy of Zp and mf is a median5 of f(Zp); the

mappings f are 1-Lipschitz for the norm (or semi-norm) ‖ · ‖p. We denote in
this case Zp ∝ Eq(σp) (or more simply Z ∝ Eq(σ)).

Remark 1 (Quasi-asymptotic regime). Most of our results will be ex-
pressed under the quasi-asymptotic regime where p is large. Sometimes, it will
be natural to index the sequences of random vectors with two (or more) indices
(e.g., the numbers of rows and columns for random matrices): in these cases,
the quasi-asymptotic regime is not well defined since the different indices could
have different convergence speed. This issue is overcome with the extensive use
of the notation O(σt), where t ∈ Θ designates the (possibly multivariate) index.
Given two sequences (at)t∈Θ, (bt)t∈Θ ∈ RΘ

+, we will denote at ≤ O(bt) if there
exists a constant C > 0 such that ∀t ∈ Θ, at ≤ Cbt and at ≥ O(bt) if ∀t ∈ Θ,
at ≥ Cbt. For clarity, when dealing with a “constant” K > 0, we will often

3A random vector Z of E is a measurable function from a probability space (Ω,F , P) to the
normed vector space (E, ‖ · ‖) (endowed with the Borel σ-algebra); one should indeed write
Z : Ω → E, but we abusively simply denote Z ∈ E.

4Aside from the fact that they all give interesting interpretation of the concentration of a
random vector, all three characterizations can be relevant, depending on the needs:

• the characterization with the independent copy is employed in Remark 4 and in the
proof of Theorem 2;

• the characterization with the median is employed in the proof of Lemma 1;

• the characterization with the expectation, likely the most intuitive, is used to establish
Proposition 11, Theorem 3 and Lemma 8.

5P
(

f(Zp) ≥ mf

)

≥ 1
2

and P
(

f(Zp) ≤ mf

)

≥ 1
2
.
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state that K ≤ O(1) and K ≥ O(1) (depending on the required control). For a
concentrated random vector Zt ∝ Eq(σt), any sequence (νt)t∈Θ ∈ RΘ

+ such that
σt ≤ O(νt) is also an observable diameter of Zt. When σt ≤ O(1), we simply
write Zt ∝ Eq.
The equivalence between the three definitions is proved in Ledoux (2005) (full
details are given in (Louart and Couillet, 2019, Propositions 1.2, 1.18 Corol-
lary 1.24)).

Remark 2 (Existence of the expectation). (Ledoux, 2005, Proposition
1.7) In the last item of Definition 1, the existence of the expectation of fp(Zp)
is guaranteed if any of the other two items holds. For instance

∀t > 0 : P
(∣
∣fp(Zp)−mfp

∣
∣ ≥ t

)
≤ Ce−(t/cσp)

q

implies the bound

E [|fp(Zp)|] ≤
∣
∣mfp

∣
∣+ E[|fp(Zp)−mfp |] ≤

∣
∣mfp

∣
∣+

Ccσp

q̄1/q̄
< ∞;

the random variable fp(Zp) is thus integrable and admits an expectation (there
always exists a median mfp ∈ R).

Remark 3 (Metric versus normed spaces). It is more natural, as done in
Ledoux (2005), to introduce the notion of concentration in metric spaces, as
one only needs to resort to Lipschitz mappings which merely require a metric
structure on E. However, to exploit Theorem 2, we will need to control the
amplitude of concentrated vectors which is easily conducted when the metric is
a norm, under linear concentration assumptions.

At one point in the course of the article, it will be useful to invoke concentra-
tion for semi-norms in place of norms. Definition 1 is still consistent for these
weaker objects. Recall that a seminorm ‖ · ‖′ : E 7→ R is a functional satisfying:

1. ∀x, y ∈ E : ‖x+ y‖′ ≤ ‖x‖′ + ‖y‖′
2. ∀x ∈ E, ∀α ∈ R : ‖αx‖′ = |α|‖x‖′

(it becomes a norm if i
n addition ‖x‖′ = 0 ⇒ x = 0).

When a concentrated vector Zp ∝ Eq(σp) takes values only on some subset
Ap ≡ Zp(Ω) ⊂ Ep (where Ω is the universe), it might be useful to be able to
establish the concentration of observations fp(Zp) where fp is only 1-Lipschitz
on Ap (and possibly non Lipschitz on Ep \ Ap). This would be an immediate
consequence of Definition 1 if one were able to extend fp Ap into a mapping
f̃p Lipschitz on the whole vector space Ep; but this is rarely possible. Yet, the
observation fp(Zp) does concentrate under the hypotheses of Definition 1.

Lemma 1 (Concentration of locally Lipschitz observations). Given a
sequence of random vectors Zp : Ω → Ep, satisfying Zp ∝ Eq(σp), for any
sequence of mappings fp : Ep → R, which are 1-Lipschitz on Zp(Ω), we have
the concentration fp(Zp) ∝ Eq(σp).
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Proof. considering a sequence of median mfp of fp(Zp) and the (sequence of)
sets Sp = {fp ≤ mfp} ⊂ Ep, if we note for any z ∈ Ep and U ⊂ Ep, U 6= ∅,
d(z, U) = inf{‖z − y‖, y ∈ U}, then we have for any z ∈ A and t > 0:

fp(z) ≥ mfp + t =⇒ d(z, Sp) ≥ t

fp(z) ≤ mfp − t =⇒ d(z, Sc
p) ≥ t,

since fp is 1-Lipschitz on A. Therefore, since z 7→ d(z, Sp) and z 7→ d(z, Sc
p) are

both 1-Lipschitz on E and both admit 0 as a median (P(d(Zp, Sp) ≥ 0) = 1 ≥ 1
2

and P(d(Zp, Sp) ≤ 0) ≥ P(fp(Zp) ≤ mfp) ≥ 1
2 ),

P
(∣
∣fp(Zp)−mfp

∣
∣ ≥ t

)
≤ P (d(Zp, Sp) ≥ t) + P (d(Zp, Sp) ≥ t)

≤ 2Ce−(t/cσp).

One could argue that, instead of Definition 1, we could have posed hypothe-
ses on the concentration of Zp on Zp(Ω) only; however, we considered the present
definition of concentration already quite complex as it stands. This locality as-
pect must be kept in mind: it will be exploited to obtain the concentration of
products of random vectors.

Lemma 1 is particularly interesting when working with conditioned vari-
ables.6

Remark 4 (Concentration of conditioned vectors). Given a (sequence
of) random vectors Z ∝ Eq(σ) and a (sequence of) events A such that
P(A) ≥ O(1), it is straightforward to show that (Z | A) ∝ Eq(σ), since there ex-
ist two constants C, c > 0 such that for any p ∈ N and any 1-Lipschitz mapping
f : Ep → R:

∀t > 0 : P
(∣
∣f(Zp)− f(Z ′

p)
∣
∣ ≥ t | A

)
≤ 1

P(A)
P
(∣
∣f(Zp)− f(Z ′

p)
∣
∣ ≥ t

)
≤ Ce−c(t/σ)q .

This being said, Lemma 1 allows us to obtain the same concentration inequality
for any mapping f : Ep → R 1-Lipschitz on Zp(A) (that will be abusively denoted
A later on).

A simple but fundamental consequence of Definition 1 is that, as announced in
the introduction, any Lipschitz transformation of a concentrated vector is also
a concentrated vector. The Lipschitz coefficient of the transformation controls
the concentration.

Proposition 1 (Stability through Lipschitz mappings). In the setting of
Definition 1, given a sequence (λp)p≥0 ∈ RN

+, a supplementary sequence of

6Letting X : Ω → E be a random vector and A ⊂ Ω be a measurable subset of the
universe Ω, A ∈ F , when P(A) > 0, the random vector X |A designates the random vector X
conditioned with A defined as the measurable mapping (A,FA,P/P(A)) → (E, ‖·‖) satisfying:
∀ω ∈ A, (X | A)(ω) = X(ω). When there is no ambiguity, we will allow ourselves to designate
abusively with the same notation “A” the actual A ⊂ Ω and the subset X(A) ⊂ E.
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normed vector spaces (E′
p, ‖ · ‖′p)p≥0 and a sequence of λp-Lipschitz transfor-

mations Fp : (Ep, ‖ · ‖p) → (E′
p, ‖ · ‖′p), we have

Zp ∝ Eq(σp) =⇒ Fp(Zp) ∝ Eq(λpσp).

There exists a range of elemental concentrated random vectors, which may
be found for instance in the monograph (Ledoux, 2005). We recall below some
of the major examples. In the following theorems, we only consider sequences
of random vectors of the normed vector spaces (Rp, ‖·‖). For readability of the
results, we will omit the index p.

Theorem 1 (Fundamental examples of concentrated vectors). The
following sequences of random vectors are concentrated and satisfy Z ∝ E2:

• Z is uniformly distributed on the sphere
√
pSp−1.

• Z ∼ N (0, Ip) has independent standard Gaussian entries.

• Z is uniformly distributed on the ball
√
pB = {x ∈ Rp, ‖x‖ ≤ √

p}.
• Z is uniformly distributed on [0,

√
p]p.

• Z has the density dPZ(z) = e−U(z)dλp(z) where U : Rp → R is a positive
functional with Hessian bounded from below by, say, cIp with c ≥ O(1)
and dλp is the Lebesgue measure on Rp.

Some fundamental results also give concentrations Z ∝ E1 (when Z ∈ Rp

has independent entries with density density 1
2e

−|·|dλ1, (Talagrand, 1995)) or

Z ∝ Eq
(

p−
1
q

)

(when Z ∈ Rp is uniformly distributed on the unit ball of the

norm ‖ · ‖q, (Ledoux, 2005)). .

Remark 5 (Concentration and observable diameter). The notion of
“observable diameter” (the diameter of the observations) introduced in Def-
inition 1 should be compared to the diameter of the distribution or “metric
diameter” which could be naturally defined as the expectation of the distance
between two independent random vectors drawn from the same distribution. The
“concentration” of a random vector can then be interpreted as an asymptotic rate
difference between the observable diameter and the metric diameter through
dimensionality. For instance, Theorem 1 states that the observable diameter of
a Gaussian distribution in Rp is of order O(1), that is to say 1√

p times less

than the metric diameter (that is of order O(
√
p)): Gaussian vectors are indeed

concentrated.
As a counter example of a non concentrated vector, one may consider the

random vector Z = [X, . . . , X ] ∈ Rp where X ∼ N (0, 1). Here the metric
diameter is of order O(

√
p), which is the same as the diameter of the observation

1√
p (X + · · ·+X) (the mapping (z1, . . . , zp) 7→ 1√

p (z1 + · · ·+ zp) is 1-Lipschitz).

A very explicit characterization of exponential concentration is given by a
bound on the different centered moments.
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Proposition 2 (Characterization with the centered moments).
(Ledoux, 2005, Proposition 1.10) A random vector Z ∈ E is q-exponentially
concentrated with an observable diameter of order σ (i.e., Z ∝ Eq(σ)) if and
only if there exist two constants C, c > 0 such that for all p ∈ N, any (sequence
of) 1-Lipschitz functions f : Ep → R:

∀r > 0 : E
[∣
∣f(Zp)− f(Z ′

p)
∣
∣
r] ≤ C

(
r

q

) r
q

(cσp)
r, (6)

where Z ′
p is an independent copy of Zp. Inequality (6) also holds if we replace

f(Z ′
p) with E[f(Zp)] (of course the constants C and c might be slightly different).

The Lipschitz-concentrated vectors described in Definition 1 belong to the
larger class of linearly concentrated random vectors that only requires the linear
observations to concentrate. This “linear concentration” presents less stability
properties than those described by Proposition 1 but is still a relevant notion
because:

1. although it must be clear that a concentrated vector Z is generally far from
its expectation (for instance Gaussian vectors lie on an ellipse), it can still
be useful to have some control on ‖Z−E[Z]‖ to express the concentration
of product of vectors; linear concentration is a sufficient assumption for
this control,

2. there are some examples (Proposition 8 and 10) where we can only derive
linear concentration inequalities from a Lipschitz concentration hypothe-
sis. In that case, we say that the Lipschitz concentration “degenerates” into
linear concentration that appears as a “residual” concentration property.

These properties of linear concentration are discussed in depth in the next sec-
tion.

2. Linear concentration and control on high order statistics

Definition 2 (Linearly concentrated vectors). Given a sequence of
normed vector spaces (Ep, ‖ · ‖p)p≥0, a sequence of random vectors

(Zp)p≥0 ∈ ∏p≥0 Ep, a sequence of deterministic vectors (Z̃p)p≥0 ∈ ∏p≥0 Ep,

a sequence of positive reals (σp)p≥0 ∈ RN
+ and a parameter q > 0, Zp is said

to be q-exponentially linearly concentrated around the deterministic equivalent
Z̃p with an observable diameter of order O(σp) iff there exist two constants
c, C > 0 such that ∀p ∈ N and for any unit-normed linear form f ∈ E′

p (∀p ∈ N,
∀x ∈ E: |f(x)| ≤ ‖x‖):

∀t > 0 : P

(∣
∣
∣f(Zp)− f(Z̃p)

∣
∣
∣ ≥ t

)

≤ Ce(t/cσp)
q

.

When the property holds, we write Z ∈ Z̃±Eq(σ). If it is unnecessary to mention
the deterministic equivalent, we will simply write Z ∈ Eq(σ). If we just need to

control its amplitude, we can write Z ∈ O(θ) ± Eq(σ) when ‖Z̃p‖ ≤ O(θp).
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When q = 2, we retrieve the well known class of sub-Gaussian random vectors.
We need this definition with generic q to prove Proposition 8 which involves a
weaker than E2 tail decay.

Of course linear concentration is stable through affine transformations.

Proposition 3 (Stability through affine mappings). Given two (se-
quences of) normed vector spaces (E, ‖ ·‖E) and (F, ‖ ·‖F ), a (sequence of) ran-
dom vectors Z ∈ E, a (sequence of) deterministic vectors Z̃ ∈ E and a (sequence
of) affine mappings φ : E → F such that ∀x ∈ E : ‖φ(x) − φ(0)‖F ≤ λ‖x‖E:

Z ∈ Z̃ ± Eq(σ) =⇒ φ(Z) ∈ φ(Z̃)± Eq(λσ).

When the expectation can be defined, there exists an implication link between
Lipschitz concentration (Definitions 1) and linear concentration (Definition 2).

Lemma 2. Given a normed space (E, ‖ · ‖) and a random vector Z ∈ E admit-
ting an expectation, we have the implication:

Z ∝ Eq(σ) =⇒ Z ∈ E[Z]± Eq(σ).

This implication becomes an equivalence in law dimensional spaces (i.e.
when the sequence index “p” is not linked to the dimension of the vector spaces
Ep); then the distinction between linear concentration and Lipschitz concentra-
tion is not relevant anymore. To simplify the hypotheses, we will assume that
the normed vector space does not change at all with p.

Proposition 4. Given a normed vector space of finite dimension (E, ‖ · ‖), a
sequence of random vectors (Zp)p∈N ∈ EN and a sequence of positive values
(σp)p∈N ∈ RN, we have the equivalence:

Z ∝ Eq(σ) ⇐⇒ Z ∈ E[Z]± Eq(σ)

Proof. We already know from Lemma 2 that Z ∝ Eq(σ) ⇒ Z ∈ E[Z]± Eq(σ),
so let us now assume that Z ∈ E[Z] ± Eq(σ). Let us note d, the dimension of
E and introducing (e1, . . . , ed) ∈ Ed, a basis of d, we note ‖ · ‖ℓ∞ , the norm
defined for any x =

∑d
i=1 xiei as ‖x‖ℓ∞ = maxi∈[d] |xi|. There exists a constant

α (α ≤ O(1)) such that for all x ∈ E, ‖x‖ ≤ α‖x‖ℓ∞ and therefore, one can
bound for any 1-lipschitz mapping f : E → R and any sequence of random
vectors Z ′, independent with Z:

P (|f(Z)− f(Z ′)| ≥ t) ≤ P (‖Z − Z ′‖ ≥ t) ≤ P

(

α sup
i∈[d]

|Zi − Z ′
i| ≥ t

)

≤ dCe−(t/cσα)q ,

where C, c > 0 are two constants. Since dC, αc ≤ O(1), we retrieve the Lipschitz
concentration of Z.

The next lemma is a formal expression of the assessment that “any deter-
ministic vector located at a distance smaller than the observable diameter to a
deterministic equivalent is also a deterministic equivalent”.
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Lemma 3. Given a random vector Z ∈ E, a deterministic vector Z̃ ∈ E such
that Z ∈ Z̃ ± Eq(σ), we have the equivalence:

Z ∈ Z̃ ′ ± Eq(σ) ⇐⇒
∥
∥
∥Z̃ − Z̃ ′

∥
∥
∥ ≤ O(σ)

Definition 3 (Centered moments of random vectors). Given a random
vector X ∈ Rp and an integer r ∈ N, we call the “rth centered moment of X”
the symmetric r-linear form CX

r : (Rp)r → R defined for any u1, . . . , ur ∈ Rp

by

CX
r (u1, . . . , up) = E

[
p
∏

i=1

(
uT
i X − E[uT

i X ]
)

]

.

When r = 2, the centered moment is the covariance matrix.

We define the operator norm of an r-linear form S of Rp as

‖S‖ ≡ sup
‖u1‖,...,‖ur‖≤1

S(u1, . . . , up).

When S is symmetric, we employ the simpler formula ‖S‖ =
sup‖u‖≤1 S(u, . . . , u). We then have the following characterization, simi-
lar to Proposition 2 (refer to (Louart and Couillet, 2019, Proposition 1.21,
Lemma 1.21) for the technical arguments required to go from a bound on r ∈ N

to a bound on r > 0).

Proposition 5 (Moment characterization of linear concentration).
Given q > 0, a sequence of random vectors Xp ∈ R

p, and a sequence of positive
numbers σp > 0, we have the following equivalence:

X ∈ Eq(σ) ⇐⇒ ∃C, c > 0, ∀p ∈ N, ∀r ≥ q : ‖CXp
r ‖ ≤ C

(
r

q

) r
q

(cσp)
r

In particular, if we note C = E[XXT ]−E[X ]E[X ]T , the covariance of X ∈ Eq(σ),
we see that ‖C‖ ≤ O(σ2), if in addition X ∈ O(σ) ± Eq(σ) (which means that
‖E[X ]‖ ≤ O(σ)), then ‖E[XXT ]‖ ≤ O(σ2)

With these results at hand, we are in particular in position to explain how
a control on the norm can be deduced from a linear concentration hypothesis.

3. Control of the norm of linearly concentrated random vectors

Given a random vector Z ∈ (E, ‖·‖), if Z ∈ Z̃±Eq(σ), the control of ‖Z−Z̃‖
can be done easily when the norm ‖·‖ can be defined as the supremum on a set
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of linear forms; for instance when (E, ‖ · ‖) = (Rp, ‖·‖∞): ‖x‖∞ = sup1≤i≤p e
T
i x

(where (e1, . . . , ep) is the canonical basis of Rp). We can then bound:

P

(

‖Z − Z̃‖∞ ≥ t
)

= P

(

sup
1≤i≤p

eTi (Z − Z̃) ≥ t

)

≤ min

(

1, p sup
1≤i≤p

P

(

eTi (Z − Z̃) ≥ t
))

≤ min
(

1, pCe−c(t/σ)q
)

≤ max(C, e) exp

(

− ctq

2σq log(p)

)

,

for some constants c, C > 0 (C ≤ O(1), c ≥ O(1)).
To manage the infinity norm, the supremum is taken on a finite set

{e1, . . . ep}. Problems arise when this supremum must be taken on an infinite set.
For instance, for the Euclidean norm, the supremum is taken over the whole unit
ball BRp ≡ {u ∈ Rp, ‖u‖ ≤ 1} since for any x ∈ Rp, ‖x‖ = sup{uTx, ‖u‖ ≤ 1}.
This loss of cardinality control can be overcome if one introduces so-called ε-nets
to discretize the ball with a net {ui}i∈I (with I finite – |I| < ∞) in order to
simultaneously :

1. approach sufficiently the norm to ensure

P

(

‖Z − Z̃‖∞ ≥ t
)

≈ P

(

sup
i∈I

uT
i (Z − Z̃) ≥ t

)

,

2. control the cardinality |I| for the inequality

P

(

sup
i∈I

uT
i (Z − Z̃) ≥ t

)

≤ |I|P
(

uT
i (Z − Z̃) ≥ t

)

not to be too loose.

One can then show that there exist two constants C, c > 0 such that:

P(‖Z − Z̃‖ ≥ t) ≤ max(C, e) exp

(

− ctq

pσq

)

. (7)

The approach with ε-nets in (Rp, ‖ · ‖) can be generalized to any normed vector
space (E, ‖·‖) when the norm can be written as a supremum through an identity
of the kind :

∀x ∈ E : ‖x‖ = sup
f∈H

‖f‖≤1

f(x), with H ⊂ E′ and dim(Vect(H)) < ∞, (8)

for a given H ⊂ E′ (for E′, the dual space of H) and with Vect(H) the subspace
of E′ generated by H . Such a H ⊂ E′ exists in particular when (E, ‖ · ‖) is a
reflexive7 space James (1957).

7Introducing the mapping J : E → E′′ (where E′′ is the bidual of E) satisfying ∀x ∈ E
and φ ∈ E′: J(x)(φ) = φ(x), the normed vector space E is said to be “reflexive” if J is onto.

13



When (E, ‖·‖) is of infinite dimension, it is possible to establish (8) for some
H ⊂ E when E is reflexive thanks to a result from James (1957), or for some
choice of semi-norms ‖ · ‖. Without going into details, we introduce the notion
of norm degree which will help us adapt the concentration rate p appearing in
the exponential term of concentration inequality (7) (concerning (Rp, ‖ · ‖)) to
other normed vector spaces.

Definition 4 (Norm degree). Given a normed (or semi-normed) vector
space (E, ‖ · ‖), and a subset H ⊂ E′, the degree ηH of H is defined as :

• ηH ≡ log(|H |) if H is finite,

• ηH ≡ dim(VectH) if H is infinite.

If there exists a subset H ⊂ E′ such that (8) is satisfied, we denote η(E, ‖ · ‖),
or more simply η‖·‖, the degree of ‖ · ‖, defined as :

η‖·‖ = η(E, ‖ · ‖) ≡ inf

{

ηH , H ⊂ E′ | ∀x ∈ E, ‖x‖ = sup
f∈H

f(x)

}

.

Example 1. We can give some examples of norm degrees :

• η (Rp, ‖ · ‖∞) = log(p) (H = {x 7→ eTi x, 1 ≤ i ≤ p}),

• η (Rp, ‖ · ‖) = p (H = {x 7→ uTx, u ∈ BRp}),

• η (Mp,n, ‖ · ‖) = n+ p (H = {M 7→ uTMv, (u, v) ∈ BRp × BRn}),

• η (Mp,n, ‖ · ‖F ) = np (H = {M 7→ Tr(AM), A ∈ Mn,p, ‖A‖F ≤ 1}),

• η (Mp,n, ‖ · ‖∗) = np (H = {M 7→ Tr(AM), A ∈ Mn,p, ‖A‖ ≤ 1}).8

Just to give some justification, if E = Rp or E = Mp,n, the dual space E′ can
be identified with E through the representation with the scalar product. Given a
subset H ′ ⊂ E such that:

∀x ∈ R
p, ‖x‖∞ = sup

u∈H′

uTx,

we can set that all u ∈ H ′ satisfy ‖u‖1 =
∑p

i=1 |ui| ≤ 1 because if we note u′ =
(sign(ui))i∈[p], we can bound ‖u‖1 = uTu′ ≤ supv∈H′ vTu′ ≤ ‖u′‖∞ ≤ 1. Then,
noting H = {e1, . . . , ep}, we know that H ⊂ H ′, otherwise, if, say ei /∈ H ′, then
one could bound ‖ei‖∞ = supu∈H′ uT ei < 1 (because if ‖u‖1 ≤ 1 and u 6= ei,
then ui < 1). Therefore H ⊂ H ′ and it consequently reaches the minimum of
ηH′ . The value of the other norm indexes is justified with the same arguments.

8‖ · ‖∗ is the nuclear norm defined for any M ∈ Mp,n by ‖M‖∗ = Tr(
√
MMT ); it is

the dual norm of ‖ · ‖, which means that for any A,B ∈ Mp,n, Tr(ABT ) ≤ ‖A‖‖B‖∗. One
must be careful that Proposition 6 is rarely useful to bound the nuclear norm as explained in
footnote 10.
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Depending on the ambient vector space, one can employ one of these examples
along with the following proposition borrowed from (Louart and Couillet, 2019,
Proposition 2.9,2.11, Corollary 2.13) to establish the concentration of the norm
of a random vector.

Proposition 6. Given a reflexive vector space (E, ‖ · ‖) and a concentrated
vector Z ∈ E satisfying Z ∈ Z̃ ± Eq(σ):

‖Z − Z̃‖ ∝ Eq
(

η
1/q
‖·‖ σ

)

and E

[

‖Z − Z̃‖
]

≤ O
(

η
1/q
‖·‖ σ

)

.

Remark 6. In Proposition 6, if Z ∝ Eq(σ), the norm staisfies the same con-
centration as it is a Lipschitz observation, and one gets9:

‖Z − Z̃‖ ∈ O
(

η
1/q
‖·‖ σ

)

± Eq (σ) .

Example 2. Given two random vectors Z ∈ Rp and X ∈ Mp,n:

• if Z ∝ E2 in (Rp, ‖·‖), then E ‖Z‖ ≤ ‖E[Z]‖+O(
√
p),

• if X ∝ E2 in (Mp,n, ‖ · ‖), then E ‖X‖ ≤ ‖E[X ]‖+O(
√
p+ n),

• if X ∝ E2 in (Mp,n, ‖ · ‖F ), then E ‖X‖ ≤ ‖E[X ]‖F +O(
√
pn).

• if X ∝ E2(
√

min(p, n)) in (Mp,n, ‖ · ‖∗), then E ‖X‖∗ ≤ ‖E[X ]‖∗ +

O(
√
pn
√

min(p, n)).10

Example 3. Let us consider the semi norm ‖ · ‖d that will be useful later and
that satisfies:

∀M ∈ Mn : ‖M‖d =

(
n∑

i=1

M2
i,i

) 1
2

= sup
D∈Dn

‖D‖F ≤1

Tr(DM).

where Dn is the set of diagonal matrices of Mp, note that for all D ∈ Dn,
‖D‖d = ‖D‖F . We see directly that η(Mn,‖·‖d) = #Dn = n and therefore for a
given X ∈ Mn such that X ∝ E2, we can bound E‖X‖d ≤ ‖E[X ]‖d +O(

√
n).

Proposition 6 is not always the optimal way to bound norms. For instance,
given a vector Z ∈ Rp and a deterministic matrix A ∈ Mp, if Z ∝ Eq, one is
tempted to bound naively thanks to Proposition 6:

9The notation Z ∈ O(θ) ± Eq(σ) was presented in Definition 2 for linearly concentrated
vectors, it can be extended to concentrated random variables.

10One must be careful here that Theorem 1 just provides concentration in the Euclidean
spaces (Rp, ‖ · ‖) or (Mp,n, ‖ · ‖F ) from which one can deduce concentration in (Rp, ‖ · ‖∞) or
(Mp,n, ‖·‖) since for all x ∈ Rp, ‖x‖∞ ≤ ‖x‖ and for all M ∈ Mp,n, ‖M‖ ≤ ‖M‖F . However

one cannot obtain a better bound than ‖M‖∗ ≤
√

min(n, p)‖M‖F : this for instance implies
that a random matrix X = (x1, . . . , xn) with x1, . . . , xn i.i.d. satisfying ∀i ∈ [n], xi ∼ N (0, Ip)

follows the concentration X ∝ E2(
√

min(p, n)) in (Mp,n, ‖ · ‖∗).
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• if ‖E[Z]‖ ≤ O(p1/q), E[‖AZ‖] ≤ ‖A‖E[‖Z‖] ≤ O(‖A‖p 1
q );

• if ‖E[Z]‖ ≤ O(1), decomposing A = PTΛQ, where P,Q ∈ Op, Λ =
Diag(λ), λ = (λ1, . . . , λp) ∈ Rp and setting Ž = (Ž1, . . . , Žp) ≡ QZ:

E[‖AZ‖] = E[‖ΛQZ‖] = E





√
√
√
√

p
∑

i=1

λ2
i Ž

2
i



 ≤ ‖λ‖E
[
‖Ž‖∞

]
≤ ‖A‖FO

(

(log p)
1
q

)

.

Note indeed that Ž ∝ E2 and therefore E[‖Ž‖∞] ≤ ‖E[Ž]‖∞ +

O
(

(log p)
1
q

)

≤ ‖E[Z]‖+O
(

(log p)
1
q

)

.

However, here, Proposition 6 is suboptimal: one can reach a better bound
thanks to the following lemma. We give a result for random vectors and random
matrices, they are actually equivalent.

Lemma 4. Given a random vector Z ∈ Eq in (Rp, ‖ · ‖∞) such that ‖E[Z]‖ ≤
O(1) and a deterministic matrix A ∈ Mp:

E[‖AZ‖] ≤ O (‖A‖F ) .

and given a random matrix X ∈ E2 in (Mp,n, ‖ · ‖F ) such that ‖E[X ]‖F ≤ O(1)
and a supplementary deterministic matrix B ∈ Mn:

E[‖AXB‖F ] ≤ O (‖A‖F‖B‖F ) .

Proof. Denoting Σ = E[ZZT ] = CZ
2 +E[Z]E[Z]T , we know from Proposition 5

that ‖Σ‖ ≤ O(1); we can then bound with Jensen’s inequality:

E[‖AZ‖] ≤
√

E[ZTATAZ] =
√

E[Tr(ΣATA)] ≤
√

‖Σ‖‖A‖F ≤ O(‖A‖F ).

The second result is basically the same. If we introduce X̌ ∈ Rpn satisfying
X̌i(j−1)+j = Xi,j , we know that X̃ ∝ E2 like X (since ‖X̃‖ = ‖X‖F ) and thanks
to the previous result we can bound:

E[‖AXB‖F ] = E[‖A⊗BX̃‖] ≤ O (‖A⊗B‖F ) = O (‖A‖F ‖B‖F ) .

Returning to Lipschitz concentration, in order to control the concentration
of the sum X + Y or the product XY of two random vectors X and Y , a first
step is to express the concentration of the concatenation (X,Y ). This last result
is easily obtained for the class of linearly concentrated random vectors but a
tight concentration of the product with good observable diameter is in general
not accessible. In the class of Lipschitz concentrated vectors, the concentration
of (X,Y ) is far more involved, and assumptions of independence here play a
central role (unlike for linear concentration).
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4. Concentration of vector concatenation

To understand the issue, consider the example where X and Y are concen-
trated but not (X,Y ). Let X be uniformly distributed on the sphere

√
pSp−1

and Y = f(X) where, for any x = (x1, . . . , xp) ∈ Rp, f(x) = x if x1 ≥ 0 and
f(x) = −x otherwise. All linear observations of X + Y are concentrated (it can
be shown that the linear concentration is stable through summation) but this
is not the case for all Lipschitz observations. The observation ‖X + Y ‖ has a
one-out-of-two chance to be equal to 0 or to be equal to 2

√
p. This means that

the observable diameter is at least of order O(
√
p), which is the metric diameter

of X + Y , thus contradicting Remark 5. This effect is due to the fact that f
is clearly not Lipschitz, and Y in a sense “defies” X (see (Louart and Couillet,
2019, Remark 2.26, Example 2.27) for more details).

Still, there exist two simple ways to obtain the concentration of (X,Y ). The
first one follows from any identity (X,Y ) = φ(Z) with Z concentrated and φ
Lipschitz. It is also possible to deduce the concentration of (X,Y ) from the
concentration of X and Y when they are independent.

Proposition 7 (Stability through independent concatenation).
(Ledoux, 2005, Proposition 1.11) Given (E, ‖ · ‖) a sequence of normed
vector spaces and two sequences of independent random vectors X,Y ∈ E, such
that X ∝ Eq(σ) and Y ∝ Er(ρ) (where q, r > 0 are two positive constants and
σ, ρ ∈ RN

+ are two sequences of positive reals), then:

(X,Y ) ∝ Eq (σ) + Er (ρ) in (E2, ‖ · ‖ℓ∞),

where, for all x, y ∈ E2, ‖(x, y)‖ℓ∞ = max(‖x‖, ‖y‖).11
Following our formalism, this means that there exist two positive constants

C, c > 0 such that ∀p ∈ N and for any 1-Lipschitz function f : (E2
p , ‖ · ‖ℓ∞) →

(R, | · |), ∀t > 0:

P
(∣
∣f(Xp, Yp)− f(X ′

p, Y
′
p)
∣
∣ ≥ t

)
≤ Ce(t/cσp)

q

+ Ce(t/cρp)
r

.

The sum being a 2-Lipschitz operation (for the norm ‖ · ‖ℓ∞), the concen-
tration of X + Y is easily handled with Proposition 1 and directly follows from
the concentration of (X,Y ). For products of vectors, more work is required.

5. Concentration of generalized products of random vectors

To treat the product of vectors, we provide a general result of concentra-
tion of what could be called “multilinearly m-Lipschitz mappings” on normed
vector spaces. Instead of properly defining this class of mappings we present it

11One could also have considered a number of equivalent norms such as ‖(x, y)‖ℓ1 = ‖x‖+

‖y‖ or ‖(x, y)‖ℓ2 =
√

‖x‖2 + ‖y‖2.
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directly in the hypotheses of the theorem. Briefly, these mappings are multivari-
ate functions which are Lipschitz on each variable, with a Lipschitz parameter
depending on the product of the norms (or semi-norms) of the other variables
and/or constants. To express the observable diameter of such an observation,
one needs a supplementary notation.

Given a vector of parameters (νl)l∈[m] ∈ Rm
+ , we denote for any k ∈ [m]:

ν(k) ≡ max
1≤l1<···<lk≤m

νl1 · · · νlk = ν(m−k+1) · · · ν(m),

where {ν(l)}l∈[m] = {νl}l∈[m] and ν(1) ≤ · · · ≤ ν(m).

Theorem 2 (Concentration of generalized product). Given a constant
m (m ≤ O(1)), let us consider:

• m (sequences of) normed vector spaces (E1, ‖ · ‖1), . . . , (Em, ‖ · ‖m).

• m (sequences of) norms (or semi-norms) ‖ · ‖′1, . . . , ‖ · ‖′m, respectively
defined on E1, . . . , Em.

• m (sequences of) random vectors Z1 ∈ E1, . . . , Zm ∈ Em satisfying

Z ≡ (Z1, . . . , Zm) ∝ Eq(σ)

for some (sequence of) positive numbers σ ∈ R+, and for both norms12

‖z1, . . . , zm‖ℓ∞ = supmi=1 ‖zi‖i and ‖(z1, . . . , zm)‖′ℓ∞ = supmi=1 ‖zi‖′i de-
fined on E = E1 × · · · × Em.

• a (sequence of) normed vector spaces (F, ‖ · ‖), a (sequence of) mappings
φ : E1, . . . , Em → F , such that ∀(z1, . . . , zm) ∈ E1×· · ·×Em and z′i ∈ Ei:

‖φ(z1, . . . , zm)− φ(z1, . . . , zi−1, z
′
i, . . . , zm)‖ ≤

∏m
j=1 max(‖zj‖′j , µj)

max(‖zi‖′i , µi)
‖zi − z′i‖i .

where µi > 0 is a (sequence of) positive reals such that µi ≥ E[‖Zi‖′i]. We
further assume µi ≥ O(σ).13

Then we have the concentration :14

φ (Z) ∝ max
l∈[m]

Eq/l
(

σlµ(m−l)
)

(9)

12One just needs to assume the concentration ‖Zi‖′i ∈ µi ± Eq(σ); the global concentration
of Zi for the norm (or seminorm) ‖ · ‖′i is not required.

13This is a very light assumption: it is hard to find any practical example where µi ≪ σ.
14Which means that there exist two constants C, c > 0 such that for all indexes and for

all 1-Lipschitz mapping f : F → R, and ∀t > 0, (10) is satisfied. Here since m ≤ O(1),
taking the maximum over l ∈ [m] is equivalent to taking the sum, up to a small change

of the constants; we will thus indifferently write φ (Z) ∝ maxl∈[m] Elq/m
(

(

σµ(l−1)
)

m
l

)

or

φ (Z) ∝ ∑m
l=1 Elq/m

(

(

σµ(l−1)
)

m
l

)

.
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The proof of the theorem is interesting but somehow technical; we thus defer
it to Appendix A.1.

It is explained in Appendix B that, in the setting of Theorem 2, the stan-
dard deviation (resp. the rth centered moment with r ≤ O(1)) of any 1-Lipschitz
observation of φ(Z) is of order O

(
σµ(m−1)

)
(resp. O

(
(σµ(m−1))r

)
) thus the

observable diameter, in the sense given by Remark 5 is given by the first expo-
nential decay, Eq

(
σµ(m−1)

)
, which represent the guiding term of (9).

We give later a more general setting with Offshot 1 where the variations
of φ are not controlled with norms (or semi-norms) (‖ · ‖′j)j∈[m]\{i} but with
concentrated variables. The setting is somehow more complex, but sometimes
more easy to apply; the proof is morally the same.

One can relax the hypothesis “m constant” and reach good concentration
rates when m tends to infinity: this is done in Appendix C.

Remark 7 (Regime decomposition). Let us rewrite the concentration in-
equality (9) to let appear the implicit parameter t. There exist two constants
C, c > 0 (in particular, C, c ≤ O(1)) such that for any 1-Lipschitz mapping
f : F → R, for any t > 0:

P (|f(Φ(Z))− E[f(Φ(Z))]| ≥ t) ≤ C max
l∈[m]

exp

(

−
(
t/(cσ)l

µ(m−l)

) q
l

)

, (10)

This expression displays m regimes of concentration, depending on l ∈ [m]: the

first one, Ce−c(t/σµ(m−1))q (l = 1), controls the probability for the small values

of t, and the last one, Ce−ctq/m/σ (l = m), controls the tail. Let us define:

t1 = 0; ∀i ∈ [m] \ {1} : ti ≡ µ(m−i)µi
(i) =

(µ(m−i+1))i

(µ(m−i))i−1
; tm+1 = ∞.

Recalling that µ(1) ≤ · · · ≤ µ(m), we see that t1 ≤ · · · ≤ tm. One can then show
that for any i ∈ [m], we have the equivalence:

t ∈ [ti, ti+1] ⇐⇒ ∀j ∈ [m] \ {i} : exp

(

−
(
t/(cσ)j

µ(m−j)

) q
j

)

≤ exp

(

−
(
t/(cσ)i

µ(m−i)

) q
i

)

.

Now, if, for a given i ∈ [m], i ≥ 2, µ(i) = µ(i+1), then ti = ti+1, therefore the

term C exp
(

−( (t/(cσ)
i

µ(m−i) )
q
i

)

can be removed from the expression of the concentra-

tion inequality since it never reaches the maximum.
In particular, when µ(1) = · · · = µ(m) ≡ µ0,

15 ∀i ∈ [m], ti = µm
0 . In this

case, there are only two regimes and we can more simply write :

Φ(Z) ∝ Eq(σµm−1
0 ) + E q

m
(σm).

15To be precise, it is sufficient to assume µ(2) = · · · = µ(m), since µ(1) never appears in the
definition of the ti for i ∈ [m].
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Corollary 1. In the setting of Theorem 2, when ∀i ∈ [m], ‖E[Zi]‖i ≤
O(ση

1/q
‖·‖′ ), we have the simpler concentration:

φ (Z) ∝ max
l∈[m]

Eq/l
(

σmη(m−l)
)

,

where we denoted η =
(

η
1/q
‖·‖′

1
, . . . , η

1/q
‖·‖′

m

)

.

Proof. Proposition 6 allows us to choose µi = C′ση1/q‖·‖′
i

for some constant

C′ > 0; we thus retrieve the result thanks to Theorem 2.

Let us give examples of “multilineary Lipschitz mappings” that would satisfy
the hypotheses of Theorem 2.

Example 4 (Entry-wise product). Letting ⊙ be the entry-wise product in
Rp defined as [x ⊙ y]i = xiyi (it is the Hadamard product for matrices), φ :
(Rp)m ∋ (x1, . . . , xm) 7→ x1 ⊙ · · · ⊙ xm ∈ Rp is multilinearly Lipschitz since we
have for all i ∈ [m]:

‖x1 ⊙ · · · ⊙ xi−1 ⊙ (xi − x′
i)⊙ xi+1 ⊙ · · · ⊙ xm)‖ ≤






m∏

j=1
j 6=i

‖xj‖∞




 ‖xi − x′

i‖ ,

for all vectors x1, . . . , xm, x′
1, . . . , x

′
m ∈ Rp. As a practical case, if

(Z1, . . . , Zm) ∝ E2 and ∀i ∈ [m], ‖E[Zi]‖∞ ≤ O(1), then Corollary 1 and Re-
mark 7 imply:

Z1 ⊙ · · · ⊙ Zm ∝ E2
(

log(p)
m−1

2

)

+ E 2
m
.

It is explained in Appendix B (Remark 14) that in this case, the observable

diameter of Z1 ⊙ · · · ⊙ Zm is provided by E2
(

log(p)
m−1

2

)

: as such, under this

very common setting, the entry-wise product has almost no impact on the rate
of concentration.

Example 5 (Matrix product). The mapping φ : (Mp)
q ∋ (M1, . . . ,Mq) 7→

M1 · · ·Mm ∈ Mp is multilinearly Lipschitz since for all i ∈ [m] :16

‖M1 · · ·Mi−1(Mi −M ′
i)Mi+1 · · ·Mm)‖F ≤






m∏

j=1
j 6=i

‖Mj‖




 ‖Mi −M ′

i‖F ,

16One could have equivalently considered, for even m ∈ N, the mapping φ : Mm
p,n → Mp,n

satisfying ∀M1, . . . ,Mm ∈ Mp,n, φ(M1, . . . ,Mm) = M1MT
2 · · ·Mm−1MT

m.
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for all matrices M1, . . . ,Mm,M ′
1, . . . ,M

′
m ∈ Mp. Given m random matrices

X1, . . . , Xm ∈ Mp such that (X1, . . . , Xm) ∝ E2 and ∀i ∈ [m], ‖E[Xi]‖ ≤
O(

√
p), Corollary 1 implies:

X1 · · ·Xm ∝ E2
(

p
m−1

2

)

+ E 2
m
.

In particular, for a “data” matrix17 X = (x1, . . . , xn) ∈ Mp,n satisfying X ∝ E2
and E[‖X‖] ≤ O(

√
p+ n), the sample covariance matrix satisfies the concentra-

tion:

1

n
XXT ∝ E2

(√
p+ n

n

)

+ E1
(
1

n

)

,

which provides an observable diameter of order O(1/
√
n) when p ≤ O(n).

Example 6 (Composition). Beyond the linear case, consider the composition
of functions defined on Lip(R), the set of Lipschitz and bounded functions of R.
Given f ∈ Lip(R), we denote:

‖f‖∞ = sup
x∈R

|f(x)| ‖f‖L = sup
x 6=y

|f(x)− f(y)|
|x− y|

(‖f‖L is not a norm but a semi-norm). The mapping φ : (Lip(R))m ∋
(f1, . . . , fm) 7→ f1 ◦ · · · ◦ fm ∈ Lip(R) is multilinearly Lipschitz and
∀f1 . . . fm, f ′

i ∈ Lip(R):

‖f1 ◦ · · · ◦ fm − f1 ◦ · · · ◦ fi−1 ◦ f ′
i ◦ fi+1 ◦ · · · ◦ fm‖∞
≤ ‖f1‖L · · · ‖fi−1‖L ‖fi − f ′

i‖∞ .

Therefore, assuming f1, . . . , fm all O(1)-Lipschitz and satisfying the concentra-
tion (f1, . . . , fm) ∝ Eq(σ), thanks to Theorem 2, the following concentration
holds :

f1 ◦ · · · ◦ fm ∝ Eq(σ) + Eq/m(σm).

When f1 = · · · = fm ≡ f and f is λ-Lipschitz with 1−λ ≥ O(1), we can follow
the dependence of the concentration of f ◦ · · · ◦ f on m thanks to Offshot 3 that
induces for any sequence of integers m the concentration inequality:

fm ∝ Eq (σ(1 − ε)m) + Eq/m ((κσ)m)

for some constants κ, ε > 0.

17That is, a matrix whose columns contain vectors of “data”, as per data science terminology.
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6. Generalized Hanson-Wright theorems

To give some more elaborate consequences of Theorem 2, let us first pro-
vide a matricial version of the popular Hanson-Wright concentration inequality,
Hanson and Wright (1971).

Proposition 8 (Hanson-Wright). Given two random matrices X,Y ∈
Mp,n, assume that (X,Y ) ∝ E2 and ‖E[X ]‖F , ‖E[Y ]‖F ≤ O(1) (as n, p → ∞).
Then, for any deterministic matrix A ∈ Mp, we have the linear concentration
(in (Mp,n, ‖ · ‖F )):

Y TAX ∈ E2 (‖A‖F ) + E1(‖A‖).

This proposition, which provides a result in terms of linear concentration,
points out an instability of the class of Lipschitz concentrated vectors which
(here through products) degenerates into a mere linear concentration. This
phenomenon fully justifies the introduction of the notion of linear concentration:
it will occur again in Proposition 10 and Lemma 8. We present the proof directly
here as it is a short and convincing application of Theorem 2.

Proof. Let us first assume that ‖A‖ ≤ 1 and consider a deterministic matrix
B ∈ Mn such that ‖B‖F ≤ 1. We then introduce the semi-norm ‖·‖A,B defined
on Mp,n and satisfying for all M ∈ Mp,n, ‖M‖A,B ≡ ‖AMB‖F . Note that for
any M,P ∈ Mp,n:

Tr(BMAPT ) ≤
{

‖M‖A,B‖P‖F
‖M‖F‖P‖A,B.

Thanks to Lemma 4, E[‖X‖A,B],E[‖Y ‖A,B] ≤ O(‖A‖F ). Besides, since
(X,Y ) ∝ Eq in ((Rp)2, ‖·‖ℓ∞), and ‖A‖, ‖B‖ ≤ 1, we also know that (X,Y ) ∝ Eq
in ((Rp)2, ‖ · ‖A,B,ℓ∞) where ‖(M,P )‖A,B,ℓ∞ = max(‖M‖A,B, ‖P‖A,B). There-
fore, the hypotheses of Theorem 2 are satisfied with a tuple µ = (µ1, µ2) ∈ R2

+

for which µ1, µ2 ≤ O(‖A‖F ); we then deduce :

XTAY ∈ Eq (‖A‖F ) + E q
2
.

If ‖A‖ > 1, one can still show that 1
‖A‖X

TAY ∈ Eq (‖A‖F /‖A‖) + Eq/2 and
retrieve the result thanks to Proposition 1.

Remark 8. In Vu and Wang (2014) and Adamczak (2015), the result is ob-
tained assuming convex concentration for X = Y ∈ Rp, i.e., the inequalities of
Definition 1 are satisfied for all 1-Lipschitz and convex functionals. This defini-
tion is less constrained, thus the class of convexly concentrated random vector is
larger18 than the class of Lipschitz concentrated random vectors. A well-known

18It is even strictly larger as it was shown in Talagrand (1988) that the uniform distri-
bution on {0, 1}p is convexly concentrated but not Lipschitz concentrated (with interesting
concentration speed).
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theorem of Talagrand (1995) provides the concentration of the Lipschitz and
convex observations of any random vector X built as an affine transformation
of a random vector with bounded (with respect to p) and independent entries.

These looser hypotheses are not very hard to handle in this particular case
of quadratic functionals since these observations exhibit convex properties. The
main issue is to find a result analogous to Lemma 1 to show the convex con-
centration of XTAX on events {‖X‖ ≤ K} for K > 0 (note that these events
are associated to convex subsets of Rp). These details go beyond the scope of
the article: we have shown in the ongoing work Louart and Couillet (2021) that
Theorem 2 can extend to entry-wise products of m convexly random vectors and
to matrix products of m convexly concentrated random matrices (for the latter
operations, the concentration is not as good as in the Lipschitz case).

Remark 9. In Adamczak (2015), the concentration is even expressed on the
random variable supA∈A XTAX where A is a bounded set of matrices (and
X ∈ Rp). The author indeed obtains the concentration inequality :

sup
A∈A

XTAX ∝ E2(‖X‖A) + E1( sup
A∈A

‖A‖),

where ‖X‖A ≡ E[supA∈A ‖(A+AT )X‖]. This result can also be obtained – in the
Lipschitz concentration case – thanks to Theorem 2 since for any x1, x2, y ∈ Rp:

∣
∣
∣
∣
sup
A∈A

xT
1 Ay − sup

A∈A
xT
2 Ay

∣
∣
∣
∣
≤ ‖x1 − x2‖ sup

A∈A
‖Ay‖

and the same kind of inequality naturally holds for the variations over y.

Let us end this section with a useful consequence of Proposition 8.

Corollary 2. Given a deterministic matrix A ∈ Mp satisfying ‖A‖F ≤ 1 and
two random matrices X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Mp,n satisfying
(X,Y ) ∝ E2 and supi∈[n] ‖E[xi]‖, ‖E[yi]‖ ≤ O(1) such that we have the concen-
tration:

∥
∥Y TAX

∥
∥
d
∈ E2

(√

log(np)
)

+ E1.

If19, in addition, ‖A‖∗ ≤ O(1) or supi∈[n] ‖E[yixT
i ]‖F ≤ O(1)20, then

E
[∥
∥XTAY

∥
∥
d

]
≤ O(

√
n).

19Actually, to bound the expectation we just need the concentration of each of the couples
(xi, yi) but not of the matrix couple (X, Y ). Recall (see Section 4) that the concentration
of each the x1, . . . , xn does not imply the concentration of the whole matrix X, even if the
columns are independent. to trackle this issue, some authors Pajor and Pastur (2009) require
a logconcave distribution for all the columns because the product of logconcave distribution
is also logconcave. However our assumptions are more general because they allow to take for
xi any O(1)-Lipschitz transformation of a Gaussian vector which represents a far larger class
of random vectors.

20To be precise, one just needs supi∈[n] |E[xT
i Ayi]| ≤ O(1).
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Remark 10. Recall from Proposition 5 that if (xi, yi) ∈ E2 and ‖E[(xi, yi)]‖F ≤
O(1) (as under the hypotheses of Corollary 2), ‖E[yixT

i ]‖ ≤ O(1) and there-
fore, ‖E[yixT

i ]‖F ≤ √
p‖E[yixT

i ]‖ ≤ O(
√
p). In particular, when xi is inde-

pendent with yi (and ‖E[xi]‖, ‖E[yi]‖ ≤ O(1)), we can bound ‖E[yixT
i ]‖F ≤

‖E[yi]‖‖E[xi]‖ ≤ O(1).

Proof (Proof of Corollary 2). Let us decompose A = UTΛV with Λ =
Diag(λ) ∈ Dn and U, V ∈ Op, noting X̌ ≡ V X and Y̌ ≡ UY we have the
identity:

‖Y TAX‖d ≤ sup
D∈Dn

‖D‖F ≤1

Tr(DY̌ TΛX̌) ≤ sup
‖d‖≤1

dT (X̌ ⊙ Y̌ )λ ≤ ‖X̌ ⊙ Y̌ ‖ ≤ ‖X̌‖F ‖Y̌ ‖∞,

and the same way, ‖Y TAX‖d ≤ ‖X̌‖∞‖Y̌ ‖F . Now we can bound thanks to
Proposition 6:

E[‖X̌‖∞] ≤
∥
∥E[X̌]

∥
∥
∞ +O(

√

log(pn)) ≤ ‖E[X ]‖+O(
√

log(pn)) ≤ O(
√

log(pn)),

and the same holds for E[‖Y̌ ‖∞]. Therefore, applying Theorem 2 to the mapping
φ : (X̌, Y̌ ) ∈ M2

p,n 7→ ‖Y̌ TΛX̌‖d, we obtain the looked for concentration.
To bound the expectation, we start with the identity

∥
∥XTAY

∥
∥
d

=
√
∑n

i=1(x
T
i Ayi)

2, and we note that the hypotheses of Proposition 8 are sat-

isfied and therefore xT
i Ayi ∈ E1. Now, if ‖A‖∗ ≤ 1, we can bound:
∣
∣E[xT

i Ayi]
∣
∣ =

∥
∥E[yix

T
i ]
∥
∥ ‖A‖∗ ≤ O(1),

thanks to Proposition 5 ((xi, yi) ∝ E2 and ‖E[xi]E[yi]
T ‖ ≤ O(1)). The same

bound is true when
∥
∥E[yix

T
i ]
∥
∥
F
≤ O(1) because

∣
∣E[xT

i Ayi]
∣
∣ ≤

∥
∥E[yix

T
i ]
∥
∥
F
‖A‖F .

As a consequence, xT
i Ayi ∈ O(1) ± E1 (with the same concentration constants

for all i ∈ [n]), and we can bound:

E
[∥
∥XTAY

∥
∥
d

]
≤

√
√
√
√

n∑

i=1

E
[
(xT

i Ayi)
2
]
≤ O(

√
n).

Let us now give an example of application of Theorem 2 when m ≥ 3.

7. Concentration of XDY
T

Considering three random matrices X,Y ∈ Mp,n and D ∈ Dn such that
(X,Y,D) ∝ E2 and ‖E[D]‖, ‖E[X ]‖F , ‖E[Y ]‖F ≤ O(1) we wish to study the
concentration of XDY T . Theorem 2 just allows us to obtain the concentra-
tion XDY T ∝ E2(n) + E1(

√
n) + E2/3 since we cannot get a better bound than

‖XDY T ‖F ≤ ‖X‖‖D‖F‖Y ‖. However, considering some particular observa-
tions on XDY T , it appears that the observable diameter can be smaller than n.
Next Propositions reveal indeed that for any deterministic u ∈ Rp and A ∈ Mp:
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1. XDY Tu is Lipschitz concentrated with an observable diameter of order
O(‖u‖

√

(n+ p) log(n))

2. Tr(AXDY T ) is concentrated with a standard deviation of or-
der O(‖A‖F

√

(n+ p) log(np)) if supi∈[n] ‖E[xiy
T
i ]‖F ≤ O(1) and

O(‖A‖∗
√

(n+ p) log(np)) otherwise.

Proposition 9. Given three random matrices X,Y = (y1, . . . , yn) ∈ Mp,n

and D ∈ Dn diagonal such that (X,Y,D) ∝ E2, ‖E[X ]‖ ≤ O(
√
p+ n) and

‖E[D]‖, supi∈[n] ‖E[yi]‖ ≤ O(
√
logn), for any deterministic vector u ∈ R

p such
that ‖u‖ ≤ 1:

XDY Tu ∝ E2
(√

(p+ n) logn
)

+ E1
(√

p+ n
)
+ E2/3 in (Rp, ‖ · ‖).

Proof. The Lipschitz concentration of XDY Tu is obtained thanks to the in-
equalities:

∥
∥XDY T v

∥
∥ ≤

{

‖X‖‖D‖‖Y Tu‖
‖X‖‖D‖F‖Y Tu‖∞.

Thanks to the bounds already presented in Example 2 (the spectral norm ‖ · ‖
on Dn is like the infinity norm ‖ · ‖∞ on Rn), we then have:

• ηX ≡ E[‖X‖] ≤ ‖E[X ]‖+O(
√
p+ n) ≤ O(

√
p+ n),

• ηD ≡ E[‖D‖] ≤ ‖E[D]‖+O(
√

log(n)) ≤ O(
√

log(n)),

• ηY Tu ≡ E[‖Y Tu‖∞] ≤ supi∈[n] ‖E[yTi u]‖+O(
√

log(n)) ≤ O(
√

log(n)).

To obtain the result, we then employ Corollary 1 for the tuple:

η =
(

O(
√
n), O(

√

log(np), O(
√

log(np)
)

satisfying:

• η(3−1) = O(max(
√

(p+ n) log(n), log(n))) ≤ O(
√

(p+ n) log(n))

• η(3−2) = O(max(
√
p+ n,

√

log(n)) ≤ O(
√
p+ n).

To express the concentration of Tr(AXDY T ), it is convenient to introduce the
following offshot of Theorem 2 based on somehow elaborate but actually simpler
assumptions.

Offshot 1. In the setting of Theorem 2, let us assume that there exist a mapping
for all i ∈ [m] Ψi : E+i → R, where E+i = E1×· · ·×Em×Ei, such that ∀i ∈ [n],
∀z = (z1, . . . , zm) ∈ E = E1 × · · · × Em and z′i ∈ Ei, we have the bound::

‖φ(z1, . . . , zm)− φ(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)‖ ≤ Ψi(z+i) ‖zi − z′i‖i ,
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where z+i = (z1, . . . , zm, z′i) ∈ E+i and for any independent copy Z ′ =
(Z ′

1, . . . , Z
′
m) of Z, we have the concentration21:

Ψi(Z+i)) ∈ O(µ(m−1))± max
l∈[m−1]

Eq/l
(

σlµ(m−l−1)
)

where Z+i = (Z1, . . . , Zi, Z
′
i+1, . . . , Z

′
m, Z ′

i) ∈ E+i, for a parameter vector µ ∈
Rm

+ such that 1 ≤ µ(1) (≤ µi, ∀i ∈ [m]). Then:

φ (Z) ∝ max
l∈[m]

Eq/l
(

σlµ(m−l)
)

.

The proof is quite similar to the proof of Theorem 2 and is left to Appendix A.2.
In the remainder, this result is sometimes applied in cases where:

Ψl(Z) ∈ O(µ(m−1))± max
l∈[m−1]

Eq/l
(
σlµ(m−l)

µ(m)

)

,

as for instance in Proposition 10 below. Although this corresponds to a stronger
setting, the most important element, which provides the observable diameter of
φ(Z), is the order of the expectation of Ψl(Z) which still equals O(µ(m−1)).

Remark 11. Theorem 2 could be seen as an iterative consequence to Offshot 1
as if we assume Offshot 1 and Theorem 2 up to m = m0−1 and want to show its
validity for m = m0. We can show with the iteration hypothesis for m = m0− 1
that for all i ∈ [m]:

‖Z1‖′1 · · · ‖Zi−1‖′i−1‖Zi+1‖′i+1 · · · ‖Zm‖′m ∈ O(µ
(m−1)
−i ) + sup

l∈[m−1]

El
(

µ
(m−1−i)
−i σi

)

,

where µ−i ≡ µ1 · · ·µi−1µi−1 · · ·µm. Now, since for all k ∈ [m − 1], µ
(l)
−i ≤

O(µ(l)), we retrieve the hypotheses of Offshot 1 and we can prove Theorem 2
for m = m0.

The concentration of Tr(AXDY T ) signifies a linear concentration of XDY T ,
demonstrating as in Proposition 8 the relevance of the notation of linear concen-
tration. Note besides that this result can be seen as a weak offshot of Hanson-
Wright concentration inequality if one takes D =

√
nE1,1, where [E1,1]i,j = 0

for all (i, j) 6= (1, 1) and [E1,1]1,1 = 1.

Proposition 10. Given three random matrices X = (x1, . . . , xn), Y =
(y1, . . . , yn) ∈ Mp,n and D ∈ Dn such that (X,Y,D) ∝ E2, ‖E[D]‖F ≤ O(

√
n),

‖E[X ]‖F , ‖E[Y ]‖F ≤ O(1), we have the linear concentration22:

XDY T ∈ E1
(√

n
)
+ E2/3 in (Mp, ‖ · ‖).

21As explained inDefinition 2, this expression means that Ψl(Z,Z
(i)) ∈

maxl∈[m−1] Eq/l
(

σlµ(m−l−1)
)

and E[Ψl(Z, Z
′)] ≤ O(µ(m−1)).

22The estimation of E[XDY T ] is done in Proposition 11
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If, in addition, supi∈[n] ‖E[yixT
i ]‖F ≤ O(1):

XDY T ∈ E1
(√

n
)
+ E2/3 in (Mp, ‖ · ‖F ).

Before proving this corollary let us give a preliminary lemma of independent
interest.

Lemma 5. Given two random matrices X ∈ Mp,n and D ∈ Dn such that
(X,D) ∝ E2, ‖E[X ]‖ ≤ O(1) and ‖E[D]‖F ≤ O(

√
n) and a deterministic matrix

A ∈ Mp,n such that ‖A‖F ≤ 1, we have the concentration:

‖AXD‖F ∈ O(
√
n)± E2(

√

log(np)) + E1.

Proof. With the same decomposition A = UTΛV and notation X̌ ≡ V X as
in the proof of Corollary 2, we have the identity:

‖AXD‖F = ‖ΛX̌D‖F =

√
√
√
√

n∑

i=1

p
∑

j=1

λ2
j X̌

2
i,jD

2
i ≤ ‖X̌‖∞‖D‖F ,

and besides, ‖AXD‖F ≤ ‖X̌‖‖D‖, we can thus employ Theorem 2 to the map-
ping φ : (X̌,D) ∈ Mp,n ×Dn → ‖UTΛX̌D‖F , to set:

‖AXD‖F ∝ E2(
√

log(np)) + E1.

To bound the expectation, let us note that for all i ∈ [n], j ∈ [p], X̌i,j ∈ O(1)±E2
and Di ∈ O(O(|E[Di]|))±E2, therefore, X̌i,jDi ∈ O(|E[Di]|)±E2(|E[Di]|+1)+E1,
and we can estimate:

E[X̌2
i,jD

2
i ] = E

[(
X̌i,jDi − E[X̌i,jDi]

)2
]

+ E[X̌i,jDi]
2

≤ O((1 + E[Di])
2) + E[X̌2

i,j ]E[(Di − E[Di])
2]2 + E[X̌2

i,j ]E[Di]
2

≤ O(1 + E[Di]
2) +O(1) + O(E[Di]

2),

with constants independent of i, j. Finally, we can bound:

E[‖AXD‖F ] ≤

√
√
√
√

n∑

i=1

p
∑

j=1

λ2
jE[X̌

2
i,jD

2
i ] ≤ O






√
√
√
√
√

(
n∑

i=1

1 + E[Di]2

)



p
∑

j=1

λ2
j








 ≤ O(

√
n)

since ‖E[D]‖F ≤ O(
√
n) and ‖λ‖ = ‖A‖F ≤ 1.

Proof (Proof of Proposition 10). Considering a deterministic matrix
A ∈ Mp,n, we will assume that ‖A‖F ≤ 1 if supi∈[n] ‖E[yixT

i ]‖F ≤ O(1) (to
show a concentration in (Mp,n, ‖ · ‖F )) and that ‖A‖∗ ≤ 1 otherwise (to show a
concentration in (Mp,n, ‖ · ‖)). In both cases, Corollary 2 and Lemma 5 allows
us to set:

‖Y TAX‖d, ‖AXD‖F , ‖DY TA‖F ∈ O(
√
n)± E2(

√
n) + E1.
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Besides, we can bound:

Tr(AXDY T ) ≤







‖AXD‖F‖Y ‖F
‖DY TA‖F ‖X‖F
‖Y TAX‖d‖D‖d,

which allows us to conclude thanks to Offshot 1 applied with the parameter
vector µ = (1, 1,

√
n):

Tr(AXDY T ) ∝ E2(
√
n) + E1(

√
n) + E 2

3
∝ E1(

√
n) + E 2

3
.

In the setting of Proposition 9, once one knows that XDY is concentrated
it is natural to look for a simple deterministic equivalent. The next proposition
help us for such a design. Note that the hypotheses are far lighter, in particular,
we just need the linear concentration of D.

Proposition 11. Given three random matrices D ∈ Dn, X = (x1, . . . , xn), Y =
(y1, . . . , yn) ∈ Mp,n and a deterministic matrix D̃ ∈ Dn, such that D ∈ D̃±E2 in
(Dn, ‖·‖) and for all23 i ∈ [n], (xi, yi) ∝ E2 and supi∈[n] ‖E[xi]‖, ‖E[yi]‖ ≤ O(1),
we have the estimate :

∥
∥E[XDY T ]− E[XE[D]Y T ]

∥
∥
F
≤ O (n) .

We can precise the estimation with supplementary assumptions:

• if ‖D̃ − E[D]‖F ≤ O(1) then
∥
∥
∥E[X(D − D̃)Y T ]

∥
∥
∥
F
≤ O

(√

nmax(p, n)
)

• if supi∈[n] ‖E[xiy
T
i ]‖F ≤ O(1) then

∥
∥
∥E[XDY T ]− E[XD̃Y T ]

∥
∥
∥
F
≤ O (n).

Proof. Considering a deterministic matrix A ∈ Mp, such that ‖A‖F ≤ 1:
∣
∣E[Tr(AXDY T )]− E[Tr(AXE[D]Y T )]

∣
∣

≤
n∑

i=1

∣
∣E
[
Dix

T
i Ayi − E[Di]x

T
i Ayi

]∣
∣

=

n∑

i=1

∣
∣E
[(
xT
i Ayi − E[xT

i Ayi]
)
(Di − E[Di])

]∣
∣

≤
n∑

i=1

√

E

[∣
∣xT

i Ayi − E[xT
i Ayi]

∣
∣
2
]

E

[

|Di − E[Di]|2
]

≤ O (n)

23If we adopt the stronger assumptions (X, Y ) ∝ E2 in (Mp,n, ‖·‖) and ‖E[X]‖F , ‖E[X]‖F ≤
O(1), we can show more directly thanks to Propositions 8 and 6:

∣

∣

∣E[Tr(AXDY T )]− E[Tr(AXE[D]Y T )]
∣

∣

∣

=
∣

∣

∣E

[

Tr
((

Y TAX − E[Y TAX]
)

(D − E[D])
)]∣

∣

∣

≤
√

E

[

‖Y TAX − E[Y TAX]‖2d
]

E

[

‖D − E[D]‖2d
]

≤ O(n)
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thanks to Hölder’s inequality applied to the bounds given by Proposition 13 (we
know that Di ∈ E[Di] ± E2 and from Proposition 8 that xT

i Ayi ∈ E[xT
i Ayi] ±

E2 + E1; note that the concentration constants are the same for all i ∈ [n]).
Now, |E[xT

i Ayi]| ≤ ‖A‖F ‖E[yixT
i ]‖F ≤ O(

√
p) thanks to Remark 10 and if

‖E[D]− D̃‖F ≤ O(1), we can bound:

∣
∣
∣E

[

Tr
(

AX
(

E[D]− D̃
)

Y T
)]∣
∣
∣≤

n∑

i=1

∣
∣
∣E
[
xT
i Ayi

] (

E[Di]− D̃i

)∣
∣
∣

≤ sup
i∈[n]

∣
∣E
[
xT
i Ayi

]∣
∣
√
n
∥
∥
∥E[D]− D̃

∥
∥
∥
F
≤O (

√
np) .

If, ‖E[D] − D̃‖F is possibly of order far bigger than O(1), but
supi∈[n] ‖E[yixT

i ]‖F ≤ O(1), then supi∈[n] |E[xT
i Ayi]| ≤ O(1), and we can still

bound:
∥
∥
∥E

[

Tr
(

AX
(

E[D]− D̃
)

Y T
)]∥
∥
∥
F
≤ n sup

i∈[n]

∣
∣E
[
xT
i Ayi

]∣
∣

∥
∥
∥E[D]− D̃

∥
∥
∥ ≤ O(n).

Let us end this article with a non multi-linear application of Theorem 2.

8. Concentration of the resolvent (Ip −

1

n
XDY

T )−1

We study here the concentration of a resolvent Q = (Ip − 1
nXDY T )−1

with the assumption of Proposition 10 for X,Y and D (in particular D is
random). This object appears in particular when studying robust regression
El Karoui et al. (2013); Mai et al. (2019). In several settings, robust regression
can be expressed by the following fixed point equation:

β =
1

n

n∑

i=1

f(xT
i β)xi, β ∈ R

p, (11)

where β is the weight vector performing the regression (to classify data, for
instance). It was then shown in Seddik et al. (2021) that the estimation of
the expectation and covariance of β (and therefore, of the performances of the
algorithm) rely on an an estimation of Q, with D = Diag(f ′(xT

i β)). To ob-
tain a sharp concentration on Q (as it is done in Theorem 3 below), one has
to understand the dependence between Q and xi, for all i ∈ [n]. This is per-
formed with the notation, given for any M = (m1, . . . ,mn) ∈ Mp,n or any
∆ = Diagi∈[n](∆i) ∈ Dn:

• M−i = (m1, . . . ,mi−1, 0,mi+1, . . . ,mn) ∈ Mp,n,

• ∆−i = Diag(∆1, . . . ,∆i−1, 0,∆i+1, . . . ,∆n) ∈ Dn.

The structure of the study of the resolvent is very similar to the one con-
ducted in Section 7 and we will try to draw the maximum of analogy between
the two sections. The first theorem should for instance be compared to Propo-
sition 11 and Proposition 10.
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Theorem 3. Given a random diagonal matrix D ∈ Dn and two random matri-
ces X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Mp,n, in the regime24 p ≤ O(n) and
under the assumptions:

• (X,D, Y ) ∝ E2,

• all the couples (xi, yi) are independent,

• O(1) ≤ supi∈[n] ‖E[xi]‖, supi∈[n] ‖E[yi]‖ ≤ O(1),

• for all i ∈ [n], there exists a random diagonal matrix D(i), independent of

(xi, yi), such that supi∈[n] ‖D−i −D
(i)
−i‖F ≤ O(1),

• there exist25 three constants κ, κD, ε > 0 (ε ≥ O(1) and κ, κD ≤ O(1)),
such that ‖X‖, ‖Y ‖ ≤ √

nκ, ‖D‖ ≤ κD and κ2κD ≤ 1− ε,

the expectation of resolvent Q ≡ (Ip − 1
nXDY T )−1 can be estimated by the

expectation of the random matrix Q̃ ≡
(

Ip − 1
nXD̃Y T

)−1

, for a deterministic

matrix D̃ satisfying26 D ∈ D̃ ± E2:

‖E[Q]− E[Q̃]‖F ≤ O(log n).

Under this setting, we then have the linear concentration27:

Q ∈ Q̃± E1
(
log(n)√

n

)

in (Mp, ‖ · ‖),

and if we further assume that ‖E[yixT
i ]‖F ≤ O(1):

Q ∈ Q̃± E1
(
log(n)√

n

)

in (Mp, ‖ · ‖F ).

24It is not necessary to assume that p ≤ O(n) but it simplifies the concentration result (if
p ≫ n, the concentration is not as good, but it can still be expressed).

25The assumptions ‖X‖/√n and ‖Y ‖/√n bounded might look a bit strong (since it is
not true for matrices with i.i.d. Gaussian entries) and it is indeed enough to assume that
E[‖X‖],E[‖Y ‖] ≤ √

nκ− η, for η ≥ O(1) small and place ourselves – as it is done in – on the
event {‖Y ‖, ‖X‖ ≤ √

nκ} that has an overwhelming probability to happen since ‖X‖/√n ∈
E[‖X‖]/√n ± E2(1/

√
n) and the same holds for Y . We however preferred here to make a

relatively strong hypothesis not to have supplementary notations and proof precautions, that
might have blurred the message.

26We already assumed D ∝ E2 in (Mp,n, ‖ · ‖F ), so we just add here the hypothesis ‖E[D]−
D̃‖F ≤ O(1).

27In Definition 2, this notation was introduced for deterministic matrix Q̃. When Q̃ is
random, nothing changes, be just careful that this concentration inequality does not directly

imply that Q ∈ E[Q] ± E2
(

1
n

√

(p+ n) log(pn)
)

+ E1
(√

p+n
n

)

+ E 2
3

(

1
n

)

(in particular, for

any (sequence of) positive value σ > 0, Q ∈ Q ± E2(σ). However since Q̃ ∝ E2(1/
√
n) in

(Mp,n, ‖ · ‖), we can deduce the linear concentration of Q
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Remark 12. Theorem 3 simplifies greatly the study of the resolvent Q =
(Ip − 1

nXDY T )−1 because it states that it basically behaves like the random

matrix Q̃ = (Ip − 1
nXD̃Y T )−1 which was far more studied in the random ma-

trix literature (see Silverstein and Bai (1995); Pajor and Pastur (2009), for in-
stance). It can be shown indeed that under the hypotheses of Theorem 3:

Q̃ ∈ Q̌δ ± E2 in (Mp,n, ‖ · ‖F ) ,

where for all ν ∈ Rn, Q̌ν ≡
(

Ip − 1
n

∑n
i=1

D̃iΣi

1−D̃iνi

)−1

(when it is defined),

∀i ∈ [n], Σi ≡ E[xiy
T
i ] and δ ∈ R

n is the unique solution to:

∀i ∈ [n] : δi =
1

n
Tr
(
ΣiQ̌δ

)
.

Remark 13. Let us give two examples of the matrices D(i) that one could
choose, depending on the cases:

• For all i ∈ [n], Di = f(xi, yi) for f : R2p → R, bounded, then, Di just
depends on (xi, yi) so one can merely take D(i) = D−i for all i ∈ [n].

• For the robust regression described by Equation 11, as in Seddik et al.
(2021), we can assume for simplicity28 ‖f‖∞, ‖f ′‖∞, ‖f ′′‖∞ ≤ O(1).
If we choose D = Diag(f ′(xT

i β)), then it is convenient to assume
1
n‖f ′‖∞‖X‖2 ≤ 1− ε (which implies in particular 1

n‖X‖‖D‖‖Y ‖ ≤ 1− ε)
so that β is well defined, being solution of a contractive fixed point equa-
tion. One can further introduce β(i) ∈ R

p, the unique solution to

β(i) =
1

n

∑

1≤j≤n
j 6=i

f(xT
j β

(i))xj .

By construction, β(i) is independent of xi and so is:

D(i) ≡ Diag
(

f ′(xT
1 β

(i)), . . . , f ′(xT
i−1β

(i)), 0, f ′(xT
i+1β

(i)), . . . , f ′(xT
nβ

(i))
)

.

Besides ‖D−i −D
(i)
−i‖F ≤ ‖f ′′‖∞‖XT

−i(β − β(i))‖F . Now, the identities:

XT
−iβ =

1

n
XT

−iXf(XTβ) and XT
−iβ

(i) =
1

n
XT

−iX−if(X
T
−iβ

(i))

(where f is applied entry-wise) imply:

‖XT
−i(β − β(i))‖F ≤ 1

n
‖f ′‖∞‖X−i‖2‖XT

−i(β − β(i))‖F +
1

n
f(xT

i β)X
T
−ixi.

We can then deduce (since 1
n‖f ′‖∞‖X−i‖2 ≤ 1− ε by hypothesis):

‖D−i −D
(i)
−i‖F ≤ ‖f ′′‖∞‖XT

−i(β − β(i))‖F ≤ ‖f ′′‖∞
nε

f(xT
i β)X

T
−ixi ≤ O(1).

28The bound ‖f‖∞ ≤ O(1) is not necessary to set the concentration of Q, but it avoids a
lot of complications.
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The proof of Theorem 3 follows the scheme of the proof of Proposition 11
which employs Corollary 2, showing the concentration of ‖Y TAX‖d and requir-
ing in particular:

1. ‖xi‖, ‖yi‖ ≤ O(1),
2. if ‖A‖∗ is not of order O(1) then ‖xiy

T
i ‖F ≤ O(1).

The preliminary lemmas to the proof of Theorem 3 are here to prove a sim-
ilar result to Corollary 2, namely the concentration of ‖Y TQAQX‖d, given
in Lemma 12. To this end, we fist bound ‖E[Qxi]‖ and ‖E[QT yi]‖ from the
bound given on ‖E[xi]‖ and ‖E[yi]‖ in Appendix D.2. To treat the case where
‖A‖∗ ≫ O(1), we show that, when ‖xiy

T
i ‖F ≤ O(1), then ‖E[Qxiy

T
i Q]‖F ≤

O(1) directly in Lemma 12, in Appendix D.3. We then have all the elements
to prove Theorem 3 in Appendix D.4.

The same way that Theorem 3 can be linked to Proposition 10 giving the lin-
ear concentration of XDY T , the next proposition can be linked to Proposition 9
giving the Lipschitz concentration of XDY Tu for any deterministic u ∈ Rp. the
proof is left in Appendix D.5.

Proposition 12. In the setting of Theorem 3, for any deterministic vector u ∈
R

p such that ‖u‖ ≤ O(1):

Qu ∝ E1
(√

logn

n

)

.

Conclusion

With the complexity of nowadays machine learning algorithms, it becomes
crucial to devise simple and efficient notations to comprehend their structural
logic. For that purpose, the present work provides a systematic approach to
comprehend the probabilistic issues involving concentrated vectors, as a model
for real data, and their use in statistical learning methods. Indeed, on the
one hand, as justified in Seddik et al. (2019), the very realistic artificial images
created by generative adversarial networks are concentrated random vectors
by construction: this strongly suggests that most commonly studied databases
satisfy our hypotheses. On the other hand, the flexibility of the hypotheses
of Theorem 2 and of Offshot 1 ensures that a wide range of real functionals
involved in machine learning problems are concerned by those results.

As such, in essence, the article provides a catalogue of ready-to-use results
for a probabilistic approach of machine learning. To summarize, establishing
a concentration inequality on a given random quantity Y generally follows the
steps:

1. Identify the random vectors X1, . . . , Xm (independent or not) upon which
Y is built, and verify that (X1, . . . , Xm) ∝ E2;

2. Bound the variations of Y with a functional δi when Xi varies, ∀i ∈ [m];
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3. Express the concentration of δi, for all i ∈ [m] and deduce the concentra-
tion of Y from Offshot 1, or from Theorem 2, depending on δi.

Our work strongly relates to general log-concave settings (very similar to
the setting we proposed here: in Adamczak (2011) for Wigner matrices and in
Pajor and Pastur (2009) for Wishart matrices) for which the asymptotic behav-
ior of the spectral distribution of random matrices was shown only to depend
on the first moments of the entries. In these probabilistic contexts, the random
objects behave as if the initial data were Gaussian because the only relevant
statistics of the asymptotic behavior is composed of the means and covariances
of the data. The laborious Gaussian calculus (with the Stein method as in
Pastur (2005), possibly combined with Poincaré inequalities as in Chatterjee
(2017)) then appears as superfluous and can be replaced by concentration of
measure arguments in more general settings. This being said, a result from
Klartag (2007); Fleury et al. (2007) establishing a central limit theorem (CLT)
for deterministic projections of concentrated random vectors allowed us in a
parallel contribution to employ Gaussian inference for the estimation of quan-
tities depending on such projections Seddik et al. (2021). Nonetheless, in this
case, a small number of projections do not satisfy the CLT29, which restricts
the application of the argument.

Appendix A. Proof of the concentration of generalized products

Appendix A.1. Proof of Theorem 2

For simplicity, let us reorder the indexing of the argument of φ such that
(µ1, . . . , µm) = (µ(1), . . . , µ(m)) (i.e., µ1 ≤ · · · ≤ µm). Let us consider
Z ′
1, . . . , Z

′
m, m independent copies of Z1, . . . , Zm and a 1-Lipschitz (for the norm

‖·‖) mapping f : F → R. For simplicity, we will note φ(Z) ≡ φ(Z1, . . . , Zm)
(and φ(Z ′) = φ(Z ′

1, . . . , Z
′
m)). Given t > 0, we wish to bound:30

P (|f(φ(Z))− f(φ(Z ′))| ≥ t) . (A.1)

The map Z 7→ f(φ(Z)) is not Lipschitz, unless Z is bounded. We thus decom-
pose the probability argument into two events, one with bounded ‖Z‖′ℓ∞ and
‖Z ′‖′ℓ∞ and the complementary with small probability. For all i ∈ [m], since

29Given a random variable z1 ∼ Unif([0, 1]) and p − 1 i.i.d. random variables z2, . . . , zp ∼
N (0, 1), we know that Z = (z1, . . . , zp) ∼ E2 but eT1 Z ∼ Unif([0, 1]) is not Gaussian. It is
stated in Klartag (2007) that for most u ∈ Sp−1, uTZ is quasi-Gaussian (the measure of the
complementary set to such u is exponentially decreasing with the maximal distance in infinity
norm between the Gaussian CDF and the CDFs of uTZ).

30We choose here to employ the characterization of the concentration with the inde-
pendent copy, because, at some point of the proof, we restrict ourselves to an event
AK and then P (|f(φ(Z)) − f(φ(Z′))| ≥ t | AK) can be bounded directly from the con-
centration (φ(Z) | AK) ∝ Eq(K(m−1)σ) resulting from Lemma 1 and Remark 4. To
bound P (|f(φ(Z)) − E[f(φ(Z))]| ≥ t | AK), one would have needed to show first that
|E[f(φ(Z))] − E[f(φ(Z)) | AK ]| ≤ O(K(m−1)σ) to then employ Lemma 3.
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‖Z‖′i ∈ E[‖Z‖′i] ± Eq(σ) and E[‖Z‖′i] ≤ µi (and the same hold for Z ′
i), we can

then employ for all t ≥ µithe identity:

P

(

‖Z‖′i ≥ 2t, ‖Z ′‖′i ≥ 2t
)

≤ P
(∣
∣‖Z‖′i − E

[
‖Z‖′i

]∣
∣ ≥ 2t− µi

)2 ≤ Ce−(t/cσ)q ,

for two constants C, c > 0. The bounds on each of the ‖Zi‖′i and ‖Z ′
i‖′i, i ∈ [m],

depend on the value of t. Let us note for all i ∈ [m]:

ti ≡ µ(m−i)µi
i = µ(m−i+1)µi−1

i =
(µ(m−i+1))i

(µ(m−i,))i−1
and tm+1 = ∞,

and remark that t1 ≤ · · · ≤ tm. If t ∈ [ti, ti+1], we decompose the probability
(A.1) playing on the realization the event:

Ai ≡
{

‖Z1‖′1, ‖Z ′
1‖′1 ≤ 2

(
t

µ(m−i)

) 1
i

; . . . ; ‖Zi‖′i, ‖Z ′
i‖′i ≤ 2

(
t

µ(m−i)

) 1
i

;

(
t

µ(i−1)

) 1
m−i+1

‖Zi+1‖′i+1, ‖Z ′
i+1‖′i+1 ≤ 2µi+1; . . . ; ‖Zm‖′m, ‖Z ′

m‖′m ≤ 2µm

}

.

Noting that for j ∈ [m]:

• if j ≤ i:
(

t
µ(m−i)

) 1
i ≥

(
ti

µ(m−i)

) 1
i

= µi ≥ µj ,

• if j ≥ i+ 1: µj ≥ µi+1 =
(

ti+1

µ(m−i)

) 1
i ≥

(
t

µ(m−i)

) 1
i

,

we can first bound, on the first hand:

P (|f(φ(Z)) − f(φ(Z ′))| ≥ t, Z ∈ Ac
i ) ≤ P (Z ∈ Ac

i )

≤
i−1∑

j=1

P (‖Zj‖ ≥ 2µj)
2
+

m∑

k=i

P

(

‖Zk‖ ≥ 2

(
t

µ(m−i)

) 1
i

)2

≤ mC exp

(

− t/(cσ)i

µ(m−i)

) q
i

. (A.2)

On the other hand, one can show that f ◦ φ Ai
is λi-Lipschitz with:

λi ≡ m2m−1

(
t

µ(m−i)

) i−1
i

µ(m−i).

Therefore, following Remark 4, since P(Ai) ≥ O(1):

(f(φ(Z)) | Ai) ∝ Eq (λi) ,

which allows us to bound (for all t ∈ [ti, ti−1]):

P (|f(φ(Z))− f(φ(Z ′))| ≥ t, Z ∈ Ai) ≤ C exp

(

− t

(2mcσ)iµ(m−i)

) q
i

. (A.3)
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If t ∈ (0, t1] = (0, µ(m)], we introduce:

A0 ≡{‖Z1‖′1, ‖Z ′
1‖′1 ≤ 2µ1; . . . ; ‖Zm‖′m, ‖Z ′

m‖′m ≤ 2µm} ,

one can still bound ∀i ∈ [m], µi ≥ µ1 = t1
µ(m−1) ≥ t

µ(m−1) , and therefore

P(Ac
0) ≤ mCe

−( t

cσµ(m−1)
)q

, besides, φ A0
is m2m−1µ(m−1)-Lipschitz, therefore

we retrieve:

P (|f(φ(Z)) − f(φ(Z ′))| ≥ t, Z ∈ A0) ≤ C exp
(

−t/2mcσµ(m−1)
)q

.

Combining these bounds for t ∈ (0, t1] with (A.2) and (A.3), we obtain the
result of the theorem (since mC, 2mc ≤ O(1)).

Appendix A.2. Proof of Offshot 1

We assume for simplicity that for all i ∈ [m], E[Ψi(Z+i)] ≤ µ(m−1). With
the same notation as before for t ∈ [0, t1]:

A0 ≡
{

∀i ∈ [m] : Ψi(Z+i) ≤ 2µ(m−1)
}

,

then, since µ(m−1) ≥ t, there exist two constants C, c > 0 such that we can
bound:

P (Ac
0) ≤ m sup

i∈[m]

P

(

|Ψi(Z+i)− E[Ψi(Z+i)]| ≥ µ(m−1)
)

≤ m sup
i∈[m]

l∈[m−1]

C exp

(

−
(

µ(m−1)

cσlµ(m−l−1)

)q/l
)

≤ m sup
i∈[m]

l∈[m−1]

Ce−(t/cσlµ(m−l−1))q/l .

Besides, since φ is mµ(m−1)-Lipschitz on A0, we can bound:

P (|φ(Z)− φ(Z ′)| ≥ t | A0) ≤ Ce−(t/mcµ(m−1)σ)q .

When t ∈ [ti, ti+1] = [µ(m−i)µi
(i), µ

(m−i)µi
(i+1)] for i ∈ [m − 1] or t ∈

[tm,∞) = [µm
(m),∞) for i = m, we rather work with the event:

Ai ≡
{

∀i ∈ [m] : Ψi(Z+i) ≤ 2t

(
µ(m−i)

t

) 1
i

}

.

On the first hand, since t
(

µ(m−i)

t

) 1
i ≥ t

i−1
i

i (µ(m−i))
1
i ≥ µ(m−i)µi−1

(i) ≥ µ(m−1),

we can bound:

P (Ac
i ) ≤ m sup

j∈[m]

P

(

|Ψj(Z+j)− E[Ψj(Z+j)]| ≥ 2t

(
µ(m−i)

t

) 1
i

− µ(m−1)

)

≤ m sup
l∈[m−1]

C exp



−
(

t

cσµ(m−l−1)

(
µ(m−i)

t

) 1
i

)q

 .

Now, given l ∈ [m− 1] (and when possibly i = m and t ∈ [µm
(m),∞)):
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• if m− 1 ≥ l ≥ i, t
µ(m−l−1)

(
µ(m−i)

t

) 1
i ≥ t

µ(m−l−1)µ(i+1)
≥ t

µ(m−l) ,

• if l ≤ i − 1, t
µ(m−l−1)

(
µ(m−i)

t

) 1
i ≥

(
t

µ(m−l−1)

) i−1
i ≥ t

µ(m−l) ,

since t
µ(m−l−1) ≥ t

µ(m−i) ≥ µi
(i) ≥ 1, by hypothesis. That allows us to bound:

P (Ac
i ) ≤ m sup

l∈[m−1]

Ce−(t/cσlµ(m−l))q/l . (A.4)

Besides, since φ is mt
(

µ(m−i)

t

) 1
i

-Lipschitz on Ai, we can bound:

P (|φ(Z) − φ(Z ′)| | Ai) ≤ Ce−(t/cimiµ(m−i)σi)
q
i . (A.5)

We then obtain our result combining (A.4) and (A.5) (recall that cm,mm ≤
O(1)).

Appendix B. Moment characterization of multi-regime concentra-
tion

Proposition 2, which provides a control of the centered moments of a con-
centrated vector, cannot be directly applied when the concentration follows
differing exponential regimes as in Theorem 2. We give here a generalization of
this result.

Proposition 13 (Moment characterization of multi-regime concentration).
Given a constant integer m ∈ N and m + 1 (sequences of) positive values31

σ, µ1 . . . , µm, a random vector Z ∈ E satisfies the concentration:

Z ∝ max
l∈[m]

Eq/l(σlµ(m−l))

if and only if there exist two constants C, c > 0 such that for all 1-Lipschitz
mapping f : E → R, and for all r > 0, we have the bound:32,33

E [|f(Z)− E [f(Z)]|r] ≤ C max
l∈[m]

(
rl

q

) rl
q

(cσlµ(m−l))r. (B.1)

31Instead of this very particular setting originating from Theorem 2, we may replace in the
theorem the quantities σlµ(m−l) by positive variables σl that should satisfy σ1 ≥ · · · ≥ σm

and ∀k ∈ [m− 1] and l ∈ {2, . . . ,m} such that k ≤ l:

σk+1
k /σk

k+1 ≤ σl
k/σ

k
l ≤ σl

l−1/σ
l−1
l .

32Since m, l and q are constants, one could replace (B.1) with:

E [|f(Z)− E [f(Z)]|r ] ≤ C max
l∈[m]

(

r
rl
q (cσl)

r

)

,

but the formulation of (B.1) is more adapted to the proof.
33Here, one could have replaced in the inequality E[f(Z)] by any median of f(Z) or by

f(Z′), for any Z′ an independent copy of Z.
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Proof. This proof is mainly a rewriting of (Ledoux, 2005, Proposition 1.10)
with the regime decomposition employed in Appendix A.1. Let us note for
simplicity, for any l ∈ [m], σl = σlµ(m−l). We start with the direct implication
which is easier to prove. Assume that there exists two constants C, c > 0 such
that for any 1-Lipschitz mapping f : E → R:

∀t > 0, P (|f(Z)− E[f(Z)]| ≥ t) ≤ C max
l∈[m]

e−(t/cσl)
q
l .

With the Fubini Theorem, one can bound for all r > 0 Given r > 0:

E [|f(Z)− E[f(Z)]|r] =
∫ ∞

0

P (|f(Z)− E[f(Z)]|r ≥ t) dt

=

∫ ∞

0

rtr−1
P (|f(Z)− E[f(Z)]| ≥ t) dt

≤ max
l∈[m]

Cr

∫ ∞

0

tr−1e−(t/cσl)
q
l dt

= max
l∈[m]

C(cσl)
rr

∫ ∞

0

tr−1e−t
q
l dt,

and, if we assume that r ≥ q (≥ q
l for all l ∈ [m]) :

r

∫ ∞

0

tr−1e−t
q
l dt =

lr

q

∫ ∞

0

t
rl
q −1e−tdt =

lr

q
Γ

(
rl

q

)

≤
(
rl

q

) rl
q

,

when r < q, one can still bound with Jensen’s inequality (since r
q ≤ 1):

E [|f(Z)− E[f(Z)]|r] ≤ E [|f(Z)− E[f(Z)]|q] rq ≤ C
r
q max
l∈[m]

l
rl
q (cσl)

r ≤ C
r
q mm(cσ1)

r.

Since mm,max(C, 1) ≤ O(1), we can choose cleverly our constants to set the
first implication of the proposition.

Let us now assume (B.1) for all 1-Lipschitz mappings f : E → R. Consider-
ing such a mapping f and t > 0, we deduce from Markov inequality and basic
integration calculus that ∀r > 0:

P (|f(Z)− E[f(Z)]| ≥ t) ≤ E [|f(Z)− E [f(Z)]|r]
tr

≤ C max
l∈[m]

(
rl(cσl/t)

q
l

q

) rl
q

.

(B.2)

Given k, l ∈ [m], k ≤ l let us note:

tk,l = c

(
σl
k

σk
l

) 1
l−k

t0,l = 0 tm,m+1 = +∞.

We will note for all l ∈ [m], tl ≡ tl−1,l, the parameters t1, . . . , tm will play
the same role as in the proof of Theorem 2 in Appendix A.1. Recalling that
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∀l ∈ [m], σl ≡ σlµ(m−l), the inequality µ(1) ≤ · · · ≤ µ(m) allows us to bound:

tk,l = c

(
(µ(m−k))l

(µ(m−l))k

) 1
l−k

= c
(

(µ(m−k))l−k(µ(k+1) · · ·µ(l))
k
) 1

l−k

≤ cµ(m−k)µk
(l) ≤ cµ(m−l+1)µl−1

(l) = c

(
(µ(m−l+1))l

(µ(m−l))l−1

) 1
l−k

= tl−1,l = tl

(recall that k ≤ l). The same way, we show that ∀h ∈ [m] such that h ≥ l,
tl+1 ≤ tl,h we know in particular that 0 = t0 ≤ t1 ≤ · · · ≤ tm+1 = ∞. Given
l ∈ [m] and t ∈ [tl, tl+1] if we chose r = q

me(
t

cσl
)

q
l , then, for all k ∈ [m], we want

to bound with a El decay the quantity:

ck(t) ≡ C

(
rk

q
(cσk/t)

q
k

) rk
q

= C

(

k

me

(
cl−kσl

k

tl−kσk
l

) q
lk

) k
me (

t
cσl

)
q
l

to be able to bound the concentration inequality (B.2).

If k = l, we have directly ck(t) = cl(t) = Ce
− l

me (
t

cσl
)
q
l
. If k ≤ l − 1, then

tk,l ≤ tl ≤ t which implies 1/tl−k ≤ 1/tl−k
k,l and:

ck(t) ≤ C




k

me

(

cl−kσl
k

tl−k
k,l σ

k
l

) q
lk





k
me (

t
cσl

)
q
l

= C

(
k

me

) k
me (

t
cσl

)
q
l

≤ Ce
− k

me (
t

cσl
)
q
l
.

And the same way, when k ≥ l+ 1, t ≤ tl+1 ≤ tl,k, thus tk−l ≤ tk−l
l,k and we can

conclude that ck(t) ≤ Ce
k

me (
t

cσl
)
q
l
. When t ∈ (0, t1], choosing r = q

me (
t

cσ1
)q, we

show the same way that ∀k ∈ [m], ck(t) ≤ Ce−
k

me (
t

cσ1
)q . We eventually obtain

for all t ∈ ∪0≤l≤m(tl, tl+1] ⊃ R+
∗ :

P (|f(Z)− E[f(Z)]| ≥ t) ≤ max
l∈[m]

Ce
−( t

c′σl
)
q
l

,

with c′ = (me)
m
q c ≤ O(1). This is the looked for concentration.

Remark 14. Proposition 13 is generally employed to bound the first centered

moments of an observation. In this case,
(

rl
q

) rl
q ≤ O(1), and when σ ≤ O(µ(1))

(which is generally the case), there exists a constant C > 0 such that we can
bound for any constant r > 0 (r ≤ O(1)):

E [|f(Z)− E [f(Z)]|r] ≤ C(σµ(m−1))r,

since µ(m−1) ≥ µ(m−l), ∀l ∈ [m]. We then see that the first exponential regime
Eq(σµ(m−1)) controls the first statistics of the observations and we then say that
the observable diameter of Z is of order O(σµ(m−1)).
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Appendix C. Concentration of high order products

We give here some offshots of Theorem 2 when m is a quasiasymptotic
variable (thus a sequence of positive real values). The result of Theorem 2 stays
almost unmodified if m tends to infinity, one mainly needs a supplementary
hypothesis.

Offshot 2. Under the hypotheses of Theorem 2 but without the hypothesis that

m is constant, if one further assumes that (log(m))
1
q ≤ O(

µ(1)

σ ), then there
exists a constant κ > 0 such that we have the concentration:

φ (Z) ∝ max
l∈[m]

Eq/l
(

κmσlµ(m−l)
)

.

Proof. One must be careful that this time m can tend to infinity. Given
i ∈ {0} ∪ [m], we will employ as in Appendix A.1 the variables ti = µ(m−i)µi

(i)

for i ∈ [m], t0 = 0 and tm+1 = ∞, but we note this time for all i ∈ {0} ∪ [m]:

Ai ≡
{

‖Z1‖′1, ‖Z ′
1‖′1 ≤ (δ + 1)

(
t

µ(m−i)

) 1
i

; . . . ; ‖Zi‖′i, ‖Z ′
i‖′i ≤ (δ + 1)

(
t

µ(m−i)

) 1
i

;

(
t

µ(i−1)

) 1
m−i+1

‖Zi+1‖′i+1, ‖Z ′
i+1‖′i+1 ≤ (δ + 1)µi+1; . . . ; ‖Zm‖′m, ‖Z ′

m‖′m ≤ (δ + 1)µm

}

for some δ ≥ 0. As we saw in the proof of Theorem 2, for all 1 ≤ k ≤ i < j ≤ m:

∀t ≤ ti+1 :

(
t/(cσ)i

µ(m−i)

) q
i

≤ µj

cσ
and ∀t ≥ ti :

(
t/(cσ)i

µ(m−i)

) 1
i

≥ µk

cσ
.

Therefore, given t ∈ [ti, ti+1], one obtains ∀j ∈ {i+ 1, . . . ,m}:
P
(
‖Zj‖′j ≥ (δ + 1)µj

)
≤ P

(∣
∣‖Zj‖′j − E[‖Zj‖′j ]

∣
∣ ≥ δµj

)

≤ C exp
(

−δq
(µj

cσ

)q)

≤ C exp

(

−δq
(
t/(cσ)i

µ(m−i)

) q
i

)

,

and the same way ∀t ∈ [ti, ti+1] and k ∈ [i]:

P

(

‖Zk‖′k ≥ (δ + 1)

(
t

µ(m−i)

) q
i

)

≤ C exp

(

−δq
(
t/(cσ)i

µ(m−i)

) q
i

)

.

By hypothesis, there exists a constant K > 0 such that ∀i ∈ [m] and t ∈ [ti, ti+1]:

K

(
t/(cσ)i

µ(m−i)

) q
i

≥ K
(µi

cσ

)q

≥ log(m).

Therefore choosing δ = (K + 1)
1
q :

P (Ac
i ) ≤ C exp

(

logm− (K + 1)

(
t/(cσ)i

µ(m−i)

) q
i

)

≤ C exp

(

−
(
t/(cσ)i

µ(m−i)

) q
i

)

,
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and ∀t ∈ (0, t1]:

P (Ac
0) ≤ C exp

(

logm− (K + 1)
(µ1

cσ

)q)

≤ C exp
((µ1

cσ

)q)

≤ C exp

(

−
(

t/cσ

µ(m−1)

)q)

.

Besides, for any i ∈ {0}∪ [m] and t ∈ [ti, ti+1], we can bound in the asymptotic
m case, as in Appendix A.1, the concentration inequality:

P (|f(φ(Z)) − f(φ(Z ′))| ≥ t, Z ∈ Ai) ≤ C exp

(

− t

(m(1 + δ)mcσ)iµ(m−i)

) q
i

.

Regrouping all the concentration inequalities for the different values of t and
noting κ ≡ (c + 1)(δ + 1)e1/e ≤ O(1), we retrieve our result (note that e1/e ≥
m1/m for all m > 0).

When only one concentrated random vector is involved, one can obtain a
better concentration inequality characterized by only two exponential regime
(as explained in Remark 7).

Offshot 3. With the hypotheses of Theorem 2 in a setting where m is quasi-
asymptotic, if Z1 = · · · = Zm, we do not have to assume anymore that

(log(m))
1
q ≤ O(E[‖Zi‖′i]/σ) and if µ1 = · · · = µm ≡ µ0, then, for any con-

stant ε > 0 (i.e. such that ε ≥ O(1)) we have the concentration:

φ (Z) ∝ Eq
(
mσ((1 + ε)µ0)

m−1
)
+ Eq/m ((κσ)m) ,

for some constant34 κ > 0.

Note that when 1 − µ0 ≥ O(1), one can choose ε sufficiently small such that
m((1 + ε)µ0)

m−1 ≤ O(1) (when m → ∞), then φ(Z) ∝ Eq (σ) + Eq/l ((κσ)m).

Proof. Let us note K ≡ max((1 + ε)µ, (t/m)1/m) and AK ≡ {‖Z‖′ ≥ K},
then, on the one hand K − µ ≥ ε

1+ε and:

P(Ac
K) ≤ P (|‖Z‖′ − E[‖Z‖′]| ≥ K − µ) ≤ Ce

−
( ε

1+ε
K

cσ

)q

≤ Ce
−
(

t

m( 1+ε
ε

cσ)m

)
q
m

,

and on the second hand φ is mKm−1-Lipschitz on AK thus:

P (|f(φ(Z))− f(φ(Z ′))| ≥ t | AK) ≤ Ce−(t/mcσKm−1)q

≤ Ce−(t/mcσ((1+ε)µ)m−1)q + Ce−(t/m(cσ)m)q/m .

Therefore, we obtain the concentration:

φ (Z) ∝ Eq
(
mσ((1 + ε)µ)m−1

)
+ Eq/m

((

ce1/e
1 + ε

ε
σ

)m)

, (C.1)

which provides us the wanted inequality since ce1/e 1+ε
ε ≤ O(1).

34The presence of this constants basically imposes that if σ ≥ O(1), then the observable
diameter of the Eq/m ((κσ)m) decay can not tend to zero. A better inequality might be
obtained, if one computes precisely the concentration constants, starting from a sharp con-
centration inequality on Z.
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Appendix D. Proofs of resolvent concentration properties

Appendix D.1. Lipschitz concentration of Q

Lemma 6. Under the assumptions of Theorem 3, ‖Q‖ ≤ 1
ε ≤ O(1).

Then we can show a Lipschitz concentration of Q but with looser observable
diameter that the one given by Theorem 3 (as for XDY T , we get better con-
centration speed in the linear concentration framework).

Lemma 7. Under the hypotheses of Theorem 3:
(

Q,
1√
n
Y TQ,

1√
n
QX

)

∝ E2 in (Mp,n, ‖ · ‖F ).

Proof. Let us just show the concentration of the resolvent, the tuple is treated
the same way. If we note φ(X,D, Y ) = Q and we introduce X ′, Y ′ ∈ Mp,n and
D′ ∈ Dn, satisfying ‖X ′‖, ‖Y ′‖ ≤ κ

√
n and ‖D′‖ ≤ κD as X,D, Y , we can

bound:

‖φ(X,D, Y )− φ(X ′, D, Y )‖F =
1

n

∥
∥φ(X,D, Y )(X −X ′)DY Tφ(X ′, D, Y )

∥
∥
F

≤ κκD

ε2
√
n
‖X −X ′‖F ,

thanks to the hypotheses and Lemma 6 below. The same way, we can bound:

• ‖φ(X,D, Y )− φ(X,D′, Y )‖F ≤ κ2

ε2 ‖D −D′‖F ,

• ‖φ(X,D, Y )− φ(X,D, Y ′)‖F ≤ κDκ
ε2

√
n
‖Y − Y ′‖F .

Therefore, as a O(1)-Lipschitz transformation of (X,D, Y ), Q ∝ E2.

Appendix D.2. Control on ‖Qxi‖ and ‖QTyi‖
The dependence between Q and (xi, yi) prevent us from bounding straight-

forwardly ‖Qxi‖ and ‖QTyi‖ with Lemma 6 and the hypotheses on xi, yi. We
can still disentangle this dependence thanks to the notations:

Q−i =

(

Ip −
1

n
XT

−iDY T
−i

)−1

and Q
(i)
−i =

(

Ip −
1

n
XT

−iD
(i)Y T

−i

)−1

.

We can indeed bound:

‖E[Q(i)
−ixi]‖ ≤ ‖E[Q(i)

−i]E[xi]‖ ≤ O(1), (D.1)

and we even have interesting concentration properties that will be important
later:

Lemma 8. Under the assumptions of Theorem 3:

Q
(i)
−ixi,

1√
n
Y T
−iQ

(i)
−ixi ∈ O(1)± E2.
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Proof. Considering u ∈ Rp, deterministic such that ‖u‖ ≤ 1, we can bound

thanks to the independence between Q
(i)
−i and xi:

∣
∣
∣uTQ

(i)
−ixi − E[uTQ

(i)
−ixi]

∣
∣
∣ ≤

∣
∣
∣uTQ

(i)
−i (xi − E[xi])

∣
∣
∣+
∣
∣
∣uT

(

Q
(i)
−i − E[Q

(i)
−i]
)

E[xi]
∣
∣
∣ .

Therefore, the concentrations xi ∝ E2 and Q
(i)
−i ∝ E2 given in Remark 7 imply

that there exist two constants C, c > 0 such that ∀t > 0 such that if we note
A−i, the sigma algebra generated by X−i and Y−i (it is independent with xi):

P

(∣
∣
∣uTQ

(i)
−ixi − E[uTQ

(i)
−ixi]

∣
∣
∣ ≥ t

)

≤ E

[

P

(∣
∣
∣uTQ

(i)
−i (xi − E[xi])

∣
∣
∣ ≥ t

2
| A−i

)]

+ P

(∣
∣
∣uT

(

Q
(i)
−i − E

[

Q
(i)
−i

])

E[xi]
∣
∣
∣ ≥ t

2

)

≤ E

[

Ce(t/c‖Q
(i)
−i‖)

2
]

+ Ce(t/c‖E[xi]‖)2 ≤ C′e−t2/c′ ,

for some constants C′, c′ > 0, thanks to the bounds ‖E[xi]‖ ≤ O(1) given in the

assumptions and ‖Q(i)
−i‖ ≤ O(1) given by Lemma 6.

The linear concentration of Y T
−iQ

(i)
−ixi/

√
n is proven the same way since one

can show as in Remark 7 that (X,D, Y ) 7→ Y T
−iQ

(i)
−i/

√
n is O(1)-Lipschitz on

{‖X‖, ‖Y ‖ ≤ κ
√
n, ‖D‖ ≤ κD}, and therefore, Y T

−iQ
(i)
−i/

√
n ∝ E2.

The link between Qxi and Q−ixi is made possible thanks to classical Schur
identities:

Q = Q−i −
1

n

DiQ−ixiy
T
i Q−i

1 + 1
nDixT

i Q−iyi
and Qxi =

Q−ixi

1 + 1
nDiyTi Q−ixi

, (D.2)

and the link between Q−ixi and Q
(i)
−ixi is made thanks to

Lemma 9. Under the hypotheses of Theorem 3, for all i ∈ [n]:

‖Q−ixi −Q
(i)
−ixi‖, ‖Q−iyi −Q

(i)
−iyi‖ ∈ O(

√

logn)± E2(
√

logn).

Proof. Let us bound directly:

∥
∥
∥

(

Q−i −Q
(i)
−i

)

xi

∥
∥
∥ ≤

∥
∥
∥
∥

1

n
Q−iX−i(D

(i)
−i −D−i)Y

T
−iQ

(i)
−ixi

∥
∥
∥
∥

≤ 1

n
‖Q−iX−i‖‖D(i)

−i −D−i‖F‖Y T
−iQ

(i)
−ixi‖∞ ≤ O

(
1√
n
‖Y T

−iQ
(i)
−ixi‖∞

)

.

We can then conclude thanks to Proposition 6 combined with the concentration
provided Lemma 8 and the bound:

1√
n

∥
∥
∥E

[

Y T
−iQ

(i)
−ixi

]∥
∥
∥
∞

≤ 1√
n

∥
∥
∥E

[

Y T
−iQ

(i)
−i

]

E [xi]
∥
∥
∥ ≤ O(1).
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We can then bound ‖Qxi‖ and ‖QTyi‖ combining Lemmas 8 and 9 with
(D.1).

Lemma 10. Under the hypotheses of Theorem 3 we can bound:

‖E[Qxi]‖ ≤ O(
√

logn) and ‖E[Qyi]‖ ≤ O(
√

logn).

Proof. The Schur identities (D.2) allow us to write:

E[Qxi] = E [δiQ−ixi] where δi ≡ 1 +
1

n
Diy

T
i Q−ixi.

For any deterministic u ∈ Rp such that ‖u‖ ≤ 1, we can bound:

∣
∣uT

E[Qxi]
∣
∣ ≤

∣
∣
∣E

[

δiu
TQ

(i)
−ixi

]

+ E

[

δiu
T
(

Q−i −Q
(i)
−i

)

xi

]∣
∣
∣

≤ O
(

E

[

|uTQ
(i)
−ixi|

]

+ E

[∥
∥
∥

(

Q−i −Q
(i)
−i

)

xi

∥
∥
∥

])

(since |δi| ≤ κ2κD

ε ). We can then conclude that ‖E[Qxi]‖ ≤
sup‖u‖≤1 |uTE[Qxi]| ≤ O(

√
logn) thanks to Lemma 9 and the concentration

uTQ
(i)
−ixi ∈ O(1)± E2. The same holds for ‖E[Qyi]‖.

Appendix D.3. Concentration of yTi QAQxi

Let us first provide a preliminary result that will allow us to set that
yTi QAQxi behaves more or less like a O(

√
logn)-Lipschitz observation of

(X,D, Y ).

Lemma 11. Under the hypotheses of Theorem 3, ∀i ∈ [n], and for any deter-
ministic matrices U, V ∈ Mp such that ‖U‖, ‖V ‖ ≤ 1:

(‖V QX‖∞, ‖UQY ‖∞) ∈ O
(√

logn
)

± E2
(√

logn
)

.

Be careful that the bound would not have been so tight for ‖QXU‖∞ and
‖QY V ‖∞ given U, V ∈ Mn.

Proof. Following the same identities and arguments presented in the proof of
Lemma 9, we can bound (since |δi| ≤ κ2κD

ε )

‖QX‖∞ = sup
i∈[n]

∥
∥
∥
∥
δiV Q

(i)
−ixi +

1

n
δiV (Q−i −Q

(i)
−i)xi

∥
∥
∥
∥
∞

≤ O

(

sup
i∈[n]

(

‖V Q
(i)
−ixi‖∞,

1√
n
‖Y T

−iQ
(i)
−ixi‖∞

))

.

Introducing, as in Section 3, (e1, . . . , ep) and (f1, . . . , fn), respectively, the
canonical basis of R

p and R
n we know from Lemma 8 that for all k ∈ [p]

and i, j ∈ [n]:

eTk V Q
(i)
−ixi ∈ O(1)± E2 and

1√
n
fT
j Y T

−iQ
(i)
−ixi ∈ O(1) ± E2,
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since |E[eTk V Q
(i)
−ixi]| ≤ ‖E[Q(i)

−i]‖‖E[xi]‖ ≤ O(1) and similarly,

|E[fT
j Y T

−iQ
(i)
−ixi]/

√
n| ≤ O(1). Following the arguments displayed in Sec-

tion 3, there exist four constants K,C, c, c′ (all ≤ O(1)) such that we can
bound:

P(‖V QX‖∞ ≥ t) ≤ P



 sup
i,j∈[n]
k∈[p]

eTk V Q
(i)
−ixi +

1√
n
fT
j Y T

−iQ
(i)
−ixi ≥

t

K





≤ max
(

1, n2pCe−t2/c
)

≤ max(e, C)e−K2t2/c′ log(n2p).

We can then deduce the concentration of ‖V QX‖∞ since log(n2p) ≤ O(log(n)).

We then have this last Lemma, quite close to Corollary 2:

Lemma 12. Under the hypotheses of Theorem 3, given a deterministic matrix
A ∈ Mp,n such that ‖A‖F ≤ 1:

1

n
‖Y TQAQX‖d ∝ E1

(√

logn

n

)

.

If we assume in addition that ‖A‖∗ ≤ 1 or ‖E[xiy
T
i ]‖F ≤ O(1), then

E[ 1n‖Y TQAQX‖d] ≤ O(log n/
√
n).

This Lemma in particular gives us the concentration of any diagonal term of
the random matrix 1

nY
TQAQX , i.e. of any 1

ny
T
i QAQxi, i ∈ [n].

Proof. To prove the concentration, let us introduce again the decomposi-
tion A = UTΛV , with U, V ∈ Op and Λ ∈ Dp. We are going to bound
the variation of 1

n‖Y TQAQX‖d towards the variables ( 1√
n
V QX, 1√

n
UQY ) ∝

E2 (see Lemma 7). Let us define the mapping φ : M2
p,n → R satis-

fying for all M,P ∈ Mp,n, φ(M,P ) = ‖MTΛP‖d (with that definition,
1
n‖Y TQAQX‖d = φ( 1√

n
V QX, 1√

n
UQY )). Given 4 variables M,P,M ′, P ′ sat-

isfying ‖M‖, ‖P‖, ‖M ′‖, ‖P ′‖ ≤ κ
ε we can bound as in the proof of Corollary 2:

|φ(M,P )− φ(M ′, P )| ≤ ‖(M −M ′)TΛP‖d ≤ 1√
nε2

‖M −M ′‖F‖P‖∞,

and the same way, |φ(M,P ) − φ(M,P ′)| ≤ 1√
nε2

‖P − P ′‖F‖M‖∞. Here, we
invoke Lemma 11, to employ the concentrations:

(‖V QX‖∞, ‖UQY ‖∞) ∈ O
(√

logn
)

± E2
(√

logn
)

.

We can then deduce from Offshot 1 the concentration√
n

lognφ(
1√
n
V QX, 1√

n
UQY ) ∝ E2 ± E1 ∝ E1, from which we deduce the

concentration of ‖Y TQAQX‖d.
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To bound the expectation of ‖Y TQAQX‖d, recall from the proof of Corol-
lary 2, that we just need to show that for all i ∈ [n]:

yTi QAQxi ∈ O (logn)± E1 (logn) . (D.3)

Since the projection on any of the diagonal elements of a matrix is a 1-Lipschitz
mapping for the semi-norm ‖·‖d, we already know that yTi QAQxi ∝ E1

(√
logn

)
,

we are thus left to bound
∣
∣E[yTi QAQxi]

∣
∣, for all i ∈ [n]. Let us decompose with

the same calculus as in the proof of Lemma 10:

yTi QAQxi = δ2i y
T
i Q

(i)
−iAQ

(i)
−ixi + δ2i y

T
i (Q−i −Q

(i)
−i)A(Q−i −Q

(i)
−i)xi

+ δ2i y
T
i (Q−i −Q

(i)
−i)AQ

(i)
−ixi + δ2i y

T
i Q

(i)
−iA(Q−i −Q

(i)
−i)xi.

We already know that (assuming only ‖A‖F ≤ 1):

• |δi| ≤ O(1) and yTi Q
(i)
−iAQ

(i)
−ixi ∝ E1(

√
logn),

•
∣
∣
∣yTi (Q−i −Q

(i)
−i)A(Q−i −Q

(i)
−i)xi

∣
∣
∣ ≤ ‖(Q−i − Q

(i)
−i)xi‖‖(Q−i − Q

(i)
−i)yi‖ ∈

O(log n)± E1(logn) thanks to Lemma 9 and because ‖A‖ ≤ ‖A‖F ≤ 1,

• we can bound: |yTi (Q−i − Q
(i)
−i)AQ

(i)
−ixi| ≤ ‖V Q

(i)
−ixi‖∞‖Λ‖F‖U(Q−i −

Q
(i)
−i)yi‖ ∈ O(log n)±E1(logn), thanks to Lemma 9 and the concentration

‖V Q
(i)
−ixi‖∞ ∈ O(

√
logn) + E2(

√
logn) given by Lemma 11.

In addition, noting Σ ≡ E[xiy
T
i ], we already know from Proposition 5 and the

hypotheses on (xi, yi) that ‖Σ‖ ≤ 1 and:

• if ‖A‖∗ ≤ 1,
∣
∣
∣E[yTi Q

(i)
−iAQ

(i)
−ixi]

∣
∣
∣ ≤ ‖Σ‖

ε2 ‖A‖∗ ≤ O(1),

• if ‖Σ‖F ≤ 1,
∣
∣
∣E[yTi Q

(i)
−iAQ

(i)
−ixi]

∣
∣
∣ ≤ ‖Σ‖F

ε2 ‖A‖F ≤ O(1).

Therefore, in all cases, Hölder inequalities allow us to show that E[|yTi QAQxi|] ≤
O(log n) and (D.3) is true, we can then conclude as in the proof of Corollary 2
that E[‖Y TQAQX‖d] ≤ O(log n/

√
n).

Appendix D.4. Proof of Theorem 3

Noting Q̄ ≡ (Ip − 1
nXE[D]Y T )−1, we consider a deterministic matrix A ∈

Mp, such that ‖A‖F ≤ 1 and we bound in a first step, as in the proof of
Proposition 11:
∣
∣E[Tr(AQ)]− E[Tr(AQ̄)]

∣
∣

≤ 1

n

n∑

i=1

∣
∣E
[(
yTi QAQxi− E[yTi QAQxi]

)
(Di − E[Di])

]∣
∣ ≤ O (logn) ,
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thanks to Hölder’s inequality applied to the concentrations Di ∝ E2 and
yTi QAQxi ∝ E1(logn) thanks to Lemma 12; (with the same concentration con-
stants for all i ∈ [n]). We can further bound:

∥
∥
∥E[Q̃]− E[Q̄]

∥
∥
∥
F
≤ 1

n

∥
∥
∥E

[

Q̄X(D̃ − E[D])Y T Q̃
]∥
∥
∥
F
≤ κ2

ε2

∥
∥
∥D̃ − E[D]

∥
∥
∥
F
≤ O(1),

which eventually allows us to set that
∥
∥
∥E[Q]− E[Q̃]

∥
∥
∥
F
≤ O(log n).

To show the concentration of Q, we note φ(X,D, Y ) = Tr(AQ). We
abusively work with X,D, Y and independent copies X ′, D′, Y ′ satisfying
‖X‖, ‖Y ‖, ‖X ′‖, ‖Y ′‖ ≤ √

nκ and ‖D‖, ‖D′‖ ≤ κD as if they were deter-
ministic variables, and we note Q′

X ≡ φ(X ′, D, Y ), Q′
D ≡ φ(X,D′, Y ) and

Q′
Y ≡ φ(X,D, Y ′). Let us bound the variations

|φ(X,D, Y )− φ(X ′, D, Y )| = 1

n
|Tr (AQ(X −X ′)DY Q′

X)| ≤ κκD

ε2
√
n
‖X −X ′‖F .

The same way, |φ(X,D, Y )− φ(X,D, Y ′)| ≤ κκD

ε2
√
n
‖Y − Y ′‖F , and we can also

bound as in the proof of Proposition 10:

|φ(X,D, Y )− φ(X,D′, Y )| ≤ 1

n
‖Y Q′

DAQX‖d ‖D −D′‖F .

We can then conclude applying Offshot 1 to the variation control we pro-
vided and the concentration of 1

n ‖Y Q′
DAQX‖d given by Lemma 12 (actually

Lemma 12 gives the concentration of ‖Y QAQX‖d, but the proof remains the
same if one replaces one of the Q with Q′

D, for a diagonal matrix D′, independent
with D).

Appendix D.5. Proof of Proposition 12

With the same variables X,Y,X ′, Y ′ ∈ Mp,n, D,D′ ∈ Dn and with the same
notations Q,Q′

X , Q′
Y , Q

′
D as in the proof of Theorem 3, we bound:

‖Qu−Q′
Xu‖ =

1

n

∥
∥Q(X −X ′)DY TQ′

Xu
∥
∥ ≤ κκD

ε2
√
n
‖X −X ′‖ ,

and the same way, ‖Qu−Q′
Y u‖ ≤ κκD

ε2
√
n
‖Y − Y ′‖. Second:

‖Qu−Q′
Du‖ =

1

n

∥
∥Q′

DX(D −D′)Y TQu
∥
∥ ≤ κ

ε
√
n
‖D −D′‖F ‖Y TQu‖∞,

and we know from Lemma 11 that ‖Y TQu‖∞ ∈ O(
√
logn)+ E2(

√
logn), which

allows us to conclude with Offshot 1 that:
√

n

logn
Qu ∝ E2 + E1,

but the E2 decay can here be removed since the E1 is looser.
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