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This article studies the Gram random matrix model G = 1
T

ΣTΣ,
Σ = σ(WX), classically found in the analysis of random feature maps
and random neural networks, where X = [x1, . . . , xT ] ∈ Rp×T is a
(data) matrix of bounded norm, W ∈ Rn×p is a matrix of indepen-
dent zero-mean unit variance entries, and σ : R → R is a Lipschitz
continuous (activation) function — σ(WX) being understood entry-
wise. By means of a key concentration of measure lemma arising
from non-asymptotic random matrix arguments, we prove that, as
n, p, T grow large at the same rate, the resolvent Q = (G + γIT )−1,
for γ > 0, has a similar behavior as that met in sample covariance
matrix models, involving notably the moment Φ = T

n
E[G], which pro-

vides in passing a deterministic equivalent for the empirical spectral
measure of G. Application-wise, this result enables the estimation of
the asymptotic performance of single-layer random neural networks.
This in turn provides practical insights into the underlying mecha-
nisms into play in random neural networks, entailing several unex-
pected consequences, as well as a fast practical means to tune the
network hyperparameters.

1. Introduction. Artificial neural networks, developed in the late fifties
(Rosenblatt, 1958) in an attempt to develop machines capable of brain-like
behaviors, know today an unprecedented research interest, notably in its
applications to computer vision and machine learning at large (Krizhevsky,
Sutskever and Hinton, 2012; Schmidhuber, 2015) where superhuman perfor-
mances on specific tasks are now commonly achieved. Recent progress in neu-
ral network performances however find their source in the processing power
of modern computers as well as in the availability of large datasets rather
than in the development of new mathematics. In fact, for lack of appropriate
tools to understand the theoretical behavior of the non-linear activations and
deterministic data dependence underlying these networks, the discrepancy
between mathematical and practical (heuristic) studies of neural networks
has kept widening. A first salient problem in harnessing neural networks
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lies in their being completely designed upon a deterministic training dataset
X = [x1, . . . , xT ] ∈ Rp×T , so that their resulting performances intricately
depend first and foremost on X. Recent works have nonetheless established
that, when smartly designed, mere randomly connected neural networks can
achieve performances close to those reached by entirely data-driven network
designs (Rahimi and Recht, 2007; Saxe et al., 2011). As a matter of fact,
to handle gigantic databases, the computationally expensive learning phase
(the so-called backpropagation of the error method) typical of deep neural
network structures becomes impractical, while it was recently shown that
smartly designed single-layer random networks (as studied presently) can al-
ready reach superhuman capabilities (Cambria et al., 2015) and beat expert
knowledge in specific fields (Jaeger and Haas, 2004). These various findings
have opened the road to the study of neural networks by means of statis-
tical and probabilistic tools (Choromanska et al., 2015; Giryes, Sapiro and
Bronstein, 2015). The second problem relates to the non-linear activation
functions present at each neuron, which have long been known (as opposed
to linear activations) to help design universal approximators for any input-
output target map (Hornik, Stinchcombe and White, 1989).

In this work, we propose an original random matrix-based approach to
understand the end-to-end regression performance of single-layer random
artificial neural networks, sometimes referred to as extreme learning ma-
chines (Huang, Zhu and Siew, 2006; Huang et al., 2012), when the number
T and size p of the input dataset are large and scale proportionally with
the number n of neurons in the network. These networks can also be seen,
from a more immediate statistical viewpoint, as a mere linear ridge-regressor
relating a random feature map σ(WX) ∈ Rn×T of explanatory variables
X = [x1, . . . , xT ] ∈ Rp×T and target variables y = [y1, . . . , yT ] ∈ Rd×T , for
W ∈ Rn×p a randomly designed matrix and σ(·) a non-linear R → R func-
tion (applied component-wise). Our approach has several interesting features
both for theoretical and practical considerations. It is first one of the few
known attempts to move the random matrix realm away from matrices with
independent or linearly dependent entries. Notable exceptions are the line
of works surrounding kernel random matrices (El Karoui, 2010; Couillet and
Benaych-Georges, 2016) as well as large dimensional robust statistics models
(Couillet, Pascal and Silverstein, 2015; El Karoui, 2013; Zhang, Cheng and
Singer, 2014). Here, to alleviate the non-linear difficulty, we exploit concen-
tration of measure arguments (Ledoux, 2005) for non-asymptotic random
matrices, thereby pushing further the original ideas of (El Karoui, 2009;
Vershynin, 2012) established for simpler random matrix models. While we
believe that more powerful, albeit more computational intensive, tools (such
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as an appropriate adaptation of the Gaussian tools advocated in (Pastur
and Ŝerbina, 2011)) cannot be avoided to handle advanced considerations
in neural networks, we demonstrate here that the concentration of measure
phenomenon allows one to fully characterize the main quantities at the heart
of the single-layer regression problem at hand.

In terms of practical applications, our findings shed light on the already
incompletely understood extreme learning machines which have proved ex-
tremely efficient in handling machine learning problems involving large to
huge datasets (Huang et al., 2012; Cambria et al., 2015) at a computationally
affordable cost. But our objective is also to pave to path to the understand-
ing of more involved neural network structures, featuring notably multiple
layers and some steps of learning by means of backpropagation of the error.

Our main contribution is twofold. From a theoretical perspective, we first
obtain a key lemma, Lemma 1, on the concentration of quadratic forms of
the type σ(wTX)Aσ(XTw) where w = ϕ(w̃), w̃ ∼ N (0, Ip), with ϕ : R→ R
and σ : R → R Lipschitz functions, and X ∈ Rp×T , A ∈ Rn×n are deter-
ministic matrices. This non-asymptotic result (valid for all n, p, T ) is then
exploited under a simultaneous growth regime for n, p, T and boundedness
conditions on ‖X‖ and ‖A‖ to obtain, in Theorem 1, a deterministic ap-
proximation Q̄ of the resolvent E[Q], where Q = ( 1

T ΣTΣ + γIT )−1, γ > 0,

Σ = σ(WX), for some W = ϕ(W̃ ), W̃ ∈ Rn×p having independent N (0, 1)
entries. As the resolvent of a matrix (or operator) is an important proxy
for the characterization of its spectrum (see e.g., (Pastur and Ŝerbina, 2011;
Akhiezer and Glazman, 1993)), this result therefore allows for the character-
ization of the asymptotic spectral properties of 1

T ΣTΣ, such as its limiting
spectral measure in Theorem 2.

Application-wise, the theoretical findings are an important preliminary
step for the understanding and improvement of various statistical meth-
ods based on random features in the large dimensional regime. Specifically,
here, we consider the question of linear ridge-regression from random feature
maps, which coincides with the aforementioned single hidden-layer random
neural network known as extreme learning machine. We show that, under
mild conditions, both the training Etrain and testing Etest mean-square er-
rors, respectively corresponding to the regression errors on known input-
output pairs (x1, y1), . . . , (xT , yT ) (with xi ∈ Rp, yi ∈ Rd) and unknown
pairings (x̂1, ŷ1), . . . , (x̂T̂ , ŷT̂ ), almost surely converge to deterministic limit-
ing values as n, p, T grow large at the same rate (while d is kept constant)
for every fixed ridge-regression parameter γ > 0. Simulations on real image
datasets are provided that corroborate our results.
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These findings provide new insights into the roles played by the acti-
vation function σ(·) and the random distribution of the entries of W in
random feature maps as well as by the ridge-regression parameter γ in the
neural network performance. We notably exhibit and prove some peculiar
behaviors, such as the impossibility for the network to carry out elementary
Gaussian mixture classification tasks, when either the activation function or
the random weights distribution are ill chosen.

Besides, for the practitioner, the theoretical formulas retrieved in this
work allow for a fast offline tuning of the aforementioned hyperparameters
of the neural network, notably when T is not too large compared to p.
The graphical results provided in the course of the article were particularly
obtained within a 100- to 500-fold gain in computation time between theory
and simulations.

The remainder of the article is structured as follows: in Section 2, we
introduce the mathematical model of the system under investigation. Our
main results are then described and discussed in Section 3, the proofs of
which are deferred to Section 5. Section 4 discusses our main findings. The
article closes on concluding remarks on envisioned extensions of the present
work in Section 6. The appendix provides some intermediary lemmas of
constant use throughout the proof section.

Reproducibility: Python 3 codes used to produce the results of Section 4
are available at https://github.com/Zhenyu-LIAO/RMT4ELM

Notations: The norm ‖·‖ is understood as the Euclidean norm for vectors
and the operator norm for matrices, while the norm ‖ · ‖F is the Frobe-
nius norm for matrices. All vectors in the article are understood as column
vectors.

2. System Model. We consider a ridge-regression task on random fea-
ture maps defined as follows. Each input data x ∈ Rp is multiplied by a ma-
trix W ∈ Rn×p; a non-linear function σ : R → R is then applied entry-wise
to the vector Wx, thereby providing a set of n random features σ(Wx) ∈ Rn
for each datum x ∈ Rp. The output z ∈ Rd of the linear regression is the
inner product z = βTσ(Wx) for some matrix β ∈ Rn×d to be designed.

From a neural network viewpoint, the n neurons of the network are the
virtual units operating the mapping Wi·x 7→ σ(Wi·x) (Wi· being the i-th
row of W ), for 1 ≤ i ≤ n. The neural network then operates in two phases:
a training phase where the regression matrix β is learned based on a known

https://github.com/Zhenyu-LIAO/RMT4ELM
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input-output dataset pair (X,Y ) and a testing phase where, for β now fixed,
the network operates on a new input dataset X̂ with corresponding unknown
output Ŷ .

During the training phase, based on a set of known inputX = [x1, . . . , xT ] ∈
Rp×T and output Y = [y1, . . . , yT ] ∈ Rd×T datasets, the matrix β is chosen
so as to minimize the mean square error 1

T

∑T
i=1 ‖zi − yi‖2 + γ‖β‖2F , where

zi = βTσ(Wxi) and γ > 0 is some regularization factor. Solving for β, this
leads to the explicit ridge-regressor

β =
1

T
Σ

(
1

T
ΣTΣ + γIT

)−1

Y T

where we defined Σ ≡ σ(WX). This follows from differentiating the mean
square error along β to obtain 0 = γβ + 1

T

∑T
i=1 σ(Wxi)(β

Tσ(Wxi)− yi)T,
so that ( 1

T ΣΣT + γIn)β = 1
T ΣY T which, along with ( 1

T ΣΣT + γIn)−1Σ =
Σ( 1

T ΣTΣ + γIT )−1, gives the result.
In the remainder, we will also denote

Q ≡
(

1

T
ΣTΣ + γIT

)−1

the resolvent of 1
T ΣTΣ. The matrix Q naturally appears as a key quantity in

the performance analysis of the neural network. Notably, the mean-square
error Etrain on the training dataset X is given by

Etrain =
1

T

∥∥∥Y T − ΣTβ
∥∥∥2

F
=
γ2

T
trY TY Q2.(1)

Under the growth rate assumptions on n, p, T taken below, it shall appear
that the random variable Etrain concentrates around its mean, letting then
appear E[Q2] as a central object in the asymptotic evaluation of Etrain.

The testing phase of the neural network is more interesting in practice
as it unveils the actual performance of neural networks. For a test dataset

X̂ ∈ Rp×T̂ of length T̂ , with unknown output Ŷ ∈ Rd×T̂ , the test mean-
square error is defined by

Etest =
1

T

∥∥∥Ŷ T − Σ̂Tβ
∥∥∥2

F

where Σ̂ = σ(WX̂) and β is the same as used in (1) (and thus only depends
on (X,Y ) and γ). One of the key questions in the analysis of such an ele-
mentary neural network lies in the determination of γ which minimizes Etest
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(and is thus said to have good generalization performance). Notably, small
γ values are known to reduce Etrain but to induce the popular overfitting is-
sue which generally increases Etest, while large γ values engender both large
values for Etrain and Etest.

From a mathematical standpoint though, the study of Etest brings for-
ward some technical difficulties that do not allow for as a simple treatment
through the present concentration of measure methodology as the study of
Etrain. Nonetheless, the analysis of Etrain allows at least for heuristic ap-
proaches to become available, which we shall exploit to propose an asymp-
totic deterministic approximation for Etest.

From a technical standpoint, we shall make the following set of assump-
tions on the mapping x 7→ σ(Wx).

Assumption 1 (Subgaussian W ). The matrix W is defined by

W = ϕ(W̃ )

(understood entry-wise), where W̃ has independent and identically distributed
N (0, 1) entries and ϕ(·) is λϕ-Lipschitz.

For a = ϕ(b) ∈ R`, ` ≥ 1, with b ∼ N (0, I`), we shall subsequently denote
a ∼ Nϕ(0, I`).

Under the notations of Assumption 1, we have in particular Wij ∼ N (0, 1)
if ϕ(t) = t and Wij ∼ U(−1, 1) (the uniform distribution on [−1, 1]) if

ϕ(t) = −1 + 2 1√
2π

∫∞
t e−x

2
dx (ϕ is here a

√
2/π-Lipschitz map).

We further need the following regularity condition on the function σ.

Assumption 2 (Function σ). The function σ is Lipschitz continuous
with parameter λσ.

This assumption holds for many of the activation functions traditionally
considered in neural networks, such as sigmoid functions, the rectified linear
unit σ(t) = max(t, 0), or the absolute value operator.

When considering the interesting case of simultaneously large data and
random features (or neurons), we shall then make the following growth rate
assumptions.
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Assumption 3 (Growth Rate). As n→∞,

0 < lim inf
n

min{p/n, T/n} ≤ lim sup
n

max{p/n, T/n} <∞

while γ, λσ, λϕ > 0 and d are kept constant. In addition,

lim sup
n
‖X‖ <∞

lim sup
n

max
ij
|Yij | <∞.

3. Main Results.

3.1. Main technical results and training performance. As a standard pre-
liminary step in the asymptotic random matrix analysis of the expectation
E[Q] of the resolvent Q = ( 1

T ΣTΣ + γIT )−1, a convergence of quadratic
forms based on the row vectors of Σ is necessary (see e.g., (Marc̆enko and
Pastur, 1967; Silverstein and Bai, 1995)). Such results are usually obtained
by exploiting the independence (or linear dependence) in the vector entries.
This not being the case here, as the entries of the vector σ(XTw) are in gen-
eral not independent, we resort to a concentration of measure approach, as
advocated in (El Karoui, 2009). The following lemma, stated here in a non-
asymptotic random matrix regime (that is, without necessarily resorting to
Assumption 3), and thus of independent interest, provides this concentration
result. For this lemma, we need first to define the following key matrix

Φ = E
[
σ(wTX)Tσ(wTX)

]
(2)

of size T × T , where w ∼ Nϕ(0, Ip).

Lemma 1 (Concentration of quadratic forms). Let Assumptions 1–2
hold. Let also A ∈ RT×T such that ‖A‖ ≤ 1 and, for X ∈ Rp×T and
w ∼ Nϕ(0, Ip), define the random vector σ ≡ σ(wTX)T ∈ RT . Then,

P

(∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣ > t

)
≤ Ce

− cT

‖X‖2λ2ϕλ2σ
min

(
t2

t20
,t

)

for t0 ≡ |σ(0)|+λϕλσ‖X‖
√

p
T and C, c > 0 independent of all other param-

eters. In particular, under the additional Assumption 3,

P

(∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣ > t

)
≤ Ce−cnmin(t,t2)

for some C, c > 0.
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Note that this lemma partially extends concentration of measure results
involving quadratic forms, see e.g., (Rudelson et al., 2013, Theorem 1.1), to
non-linear vectors.

With this result in place, the standard resolvent approaches of random
matrix theory apply, providing our main theoretical finding as follows.

Theorem 1 (Asymptotic equivalent for E[Q]). Let Assumptions 1–3
hold and define Q̄ as

Q̄ ≡
(
n

T

Φ

1 + δ
+ γIT

)−1

where δ is implicitly defined as the unique positive solution to δ = 1
T tr ΦQ̄.

Then, for all ε > 0, there exists c > 0 such that∥∥E[Q]− Q̄
∥∥ ≤ cn− 1

2
+ε.

As a corollary of Theorem 1 along with a concentration argument on
1
T trQ, we have the following result on the spectral measure of 1

T ΣTΣ, which
may be seen as a non-linear extension of (Silverstein and Bai, 1995) for which
σ(t) = t.

Theorem 2 (Limiting spectral measure of 1
T ΣTΣ). Let Assumptions 1–

3 hold and, for λ1, . . . , λT the eigenvalues of 1
T ΣTΣ, define µn = 1

T

∑T
i=1 δλi.

Then, for every bounded continuous function f , with probability one∫
fdµn −

∫
fdµ̄n → 0.

where µ̄n is the measure defined through its Stieltjes transform mµ̄n(z) ≡∫
(t− z)−1dµ̄n(t) given, for z ∈ {w ∈ C, =[w] > 0}, by

mµ̄n(z) =
1

T
tr

(
n

T

Φ

1 + δz
− zIT

)−1

with δz the unique solution in {w ∈ C, =[w] > 0} of

δz =
1

T
tr Φ

(
n

T

Φ

1 + δz
− zIT

)−1

.

Note that µ̄n has a well-known form, already met in early random ma-
trix works (e.g., (Silverstein and Bai, 1995)) on sample covariance matrix
models. Notably, µ̄n is also the deterministic equivalent of the empirical



A RANDOM MATRIX APPROACH TO NEURAL NETWORKS 9

spectral measure of 1
T P

TWTWP for any deterministic matrix P ∈ Rp×T
such that PTP = Φ. As such, to some extent, the results above provide a
consistent asymptotic linearization of 1

T ΣTΣ. From standard spiked model
arguments (see e.g., (Benaych-Georges and Nadakuditi, 2012)), the result
‖E[Q]−Q̄‖ → 0 further suggests that also the eigenvectors associated to iso-
lated eigenvalues of 1

T ΣTΣ (if any) behave similarly to those of 1
T P

TWTWP ,
a remark that has fundamental importance in the neural network perfor-
mance understanding.

However, as shall be shown in Section 3.3, and contrary to empirical
covariance matrix models of the type PTWTWP , Φ explicitly depends on
the distribution of Wij (that is, beyond its first two moments). Thus, the
aforementioned linearization of 1

T ΣTΣ, and subsequently the deterministic
equivalent for µn, are not universal with respect to the distribution of zero-
mean unit variance Wij . This is in striking contrast to the many linear
random matrix models studied to date which often exhibit such universal
behaviors. This property too will have deep consequences in the performance
of neural networks as shall be shown through Figure 3 in Section 4 for an
example where inappropriate choices for the law of W lead to network failure
to fulfill the regression task.

For convenience in the following, letting δ and Φ be defined as in Theo-
rem 1, we shall denote

Ψ =
n

T

Φ

1 + δ
.(3)

Theorem 1 provides the central step in the evaluation of Etrain, for which
not only E[Q] but also E[Q2] needs be estimated. This last ingredient is
provided in the following proposition.

Proposition 1 (Asymptotic equivalent for E[QAQ]). Let Assumptions 1–
3 hold and A ∈ RT×T be a symmetric non-negative definite matrix which is
either Φ or a matrix with uniformly bounded operator norm (with respect to
T ). Then, for all ε > 0, there exists c > 0 such that, for all n,∥∥∥∥∥E[QAQ]−

(
Q̄AQ̄+

1
n tr

(
ΨQ̄AQ̄

)
1− 1

n tr Ψ2Q̄2
Q̄ΨQ̄

)∥∥∥∥∥ ≤ cn− 1
2

+ε.

As an immediate consequence of Proposition 1, we have the following
result on the training mean-square error of single-layer random neural net-
works.
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Theorem 3 (Asymptotic training mean-square error). Let Assumptions 1–
3 hold and Q̄, Ψ be defined as in Theorem 1 and (3). Then, for all ε > 0,

n
1
2
−ε (Etrain − Ētrain

)
→ 0

almost surely, where

Etrain =
1

T

∥∥∥Y T − ΣTβ
∥∥∥2

F
=
γ2

T
trY TY Q2

Ētrain =
γ2

T
trY TY Q̄

[
1
n tr ΨQ̄2

1− 1
n tr(ΨQ̄)2

Ψ + IT

]
Q̄.

Since Q̄ and Φ share the same orthogonal eigenvector basis, it appears
that Etrain depends on the alignment between the right singular vectors of
Y and the eigenvectors of Φ, with weighting coefficients(

γ

λi + γ

)2
(

1 + λi

1
n

∑T
j=1 λj(λj + γ)−2

1− 1
n

∑T
j=1 λ

2
j (λj + γ)−2

)
, 1 ≤ i ≤ T

where we denoted λi = λi(Ψ), 1 ≤ i ≤ T , the eigenvalues of Ψ (which
depend on γ through λi(Ψ) = n

T (1+δ)λi(Φ)). If lim infn n/T > 1, it is easily
seen that δ → 0 as γ → 0, in which case Etrain → 0 almost surely. However,
in the more interesting case in practice where lim supn n/T < 1, δ → ∞ as
γ → 0 and Etrain consequently does not have a simple limit (see Section 4.3
for more discussion on this aspect).

Theorem 3 is also reminiscent of applied random matrix works on empiri-
cal covariance matrix models, such as (Bai and Silverstein, 2007; Kammoun
et al., 2009), then further emphasizing the strong connection between the

non-linear matrix σ(WX) and its linear counterpart WΦ
1
2 .

As a side note, observe that, to obtain Theorem 3, we could have used
the fact that trY TY Q2 = − ∂

∂γ trY TY Q which, along with some analyticity
arguments (for instance when extending the definition of Q = Q(γ) to Q(z),

z ∈ C), would have directly ensured that ∂Q̄
∂γ is an asymptotic equivalent

for −E[Q2], without the need for the explicit derivation of Proposition 1.
Nonetheless, as shall appear subsequently, Proposition 1 is also a proxy to
the asymptotic analysis of Etest. Besides, the technical proof of Proposition 1
quite interestingly showcases the strength of the concentration of measure
tools under study here.
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3.2. Testing performance. As previously mentioned, harnessing the asymp-
totic testing performance Etest seems, to the best of the authors’ knowledge,
out of current reach with the sole concentration of measure arguments used
for the proof of the previous main results. Nonetheless, if not fully effec-
tive, these arguments allow for an intuitive derivation of a deterministic
equivalent for Etest, which is strongly supported by simulation results. We
provide this result below under the form of a yet unproven claim, a heuristic
derivation of which is provided at the end of Section 5.

To introduce this result, let X̂ = [x̂1, . . . , x̂T̂ ] ∈ Rp×T̂ be a set of input

data with corresponding output Ŷ = [ŷ1, . . . , ŷT̂ ] ∈ Rd×T̂ . We also define

Σ̂ = σ(WX̂) ∈ Rp×T̂ . We assume that X̂ and Ŷ satisfy the same growth
rate conditions as X and Y in Assumption 3. To introduce our claim, we
need to extend the definition of Φ in (2) and Ψ in (3) to the following
notations: for all pair of matrices (A,B) of appropriate dimensions,

ΦAB = E
[
σ(wTA)Tσ(wTB)

]
ΨAB =

n

T

ΦAB

1 + δ

where w ∼ Nϕ(0, Ip). In particular, Φ = ΦXX and Ψ = ΨXX .
With these notations in place, we are in position to state our claimed

result.

Conjecture 1 (Deterministic equivalent for Etest). Let Assumptions 1–
2 hold and X̂, Ŷ satisfy the same conditions as X,Y in Assumption 3. Then,
for all ε > 0,

n
1
2
−ε (Etest − Ētest

)
→ 0

almost surely, where

Etest =
1

T̂

∥∥∥Ŷ T − Σ̂Tβ
∥∥∥2

F

Ētest =
1

T̂

∥∥∥Ŷ T −ΨT
XX̂

Q̄Y T
∥∥∥2

F

+
1
n trY TY Q̄ΨQ̄

1− 1
n tr(ΨQ̄)2

[
1

T̂
tr ΨX̂X̂ −

1

T̂
tr(IT + γQ̄)(ΨXX̂ΨX̂XQ̄)

]
.

While not immediate at first sight, one can confirm (using notably the
relation ΨQ̄ + γQ̄ = IT ) that, for (X̂, Ŷ ) = (X,Y ), Ētrain = Ētest, as ex-
pected.
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In order to evaluate practically the results of Theorem 3 and Conjecture 1,
it is a first step to be capable of estimating the values of ΦAB for various
σ(·) activation functions of practical interest. Such results, which call for
completely different mathematical tools (mostly based on integration tricks),
are provided in the subsequent section.

3.3. Evaluation of ΦAB. The evaluation of ΦAB = E[σ(wTA)Tσ(wTB)]
for arbitrary matrices A,B naturally boils down to the evaluation of its
individual entries and thus to the calculus, for arbitrary vectors a, b ∈ Rp,
of

Φab ≡E[σ(wTa)σ(wTb)] = (2π)−
p
2

∫
σ(ϕ(w̃)Ta)σ(ϕ(w̃)Tb)e−

1
2
‖w̃‖2dw̃.(4)

The evaluation of (4) can be obtained through various integration tricks
for a wide family of mappings ϕ(·) and activation functions σ(·). The most
popular activation functions in neural networks are sigmoid functions, such
as σ(t) = erf(t) ≡ 2√

π

∫ t
0 e
−u2du, as well as the so-called rectified linear unit

(ReLU) defined by σ(t) = max(t, 0) which has been recently popularized
as a result of its robust behavior in deep neural networks. In physical ar-
tificial neural networks implemented using light projections, σ(t) = |t| is
the preferred choice. Note that all aforementioned functions are Lipschitz
continuous and therefore in accordance with Assumption 2.

Despite their not abiding by the prescription of Assumptions 1 and 2, we
believe that the results of this article could be extended to more general
settings, as discussed in Section 4. In particular, since the key ingredient in
the proof of all our results is that the vector σ(wTX) follows a concentration
of measure phenomenon, induced by the Gaussianity of w̃ (if w = ϕ(w̃)),
the Lipschitz character of σ and the norm boundedness of X, it is likely,
although not necessarily simple to prove, that σ(wTX) may still concentrate
under relaxed assumptions. This is likely the case for more generic vectors
w than Nϕ(0, Ip) as well as for a larger class of activation functions, such as
polynomial or piece-wise Lipschitz continuous functions.

In anticipation of these likely generalizations, we provide in Table 1 the
values of Φab for w ∼ N (0, Ip) (i.e., for ϕ(t) = t) and for a set of functions
σ(·) not necessarily satisfying Assumption 2. Denoting Φ ≡ Φ(σ(t)), it is
interesting to remark that, since arccos(x) = − arcsin(x)+ π

2 , Φ(max(t, 0)) =
Φ(1

2 t) + Φ(1
2 |t|). Also, [Φ(cos(t)) + Φ(sin(t))]a,b = exp(−1

2‖a− b‖
2), a result

reminiscent of (Rahimi and Recht, 2007).1 Finally, note that Φ(erf(κt)) →
1It is in particular not difficult to prove, based on our framework, that, as n/T →∞,

a random neural network composed of n/2 neurons with activation function σ(t) = cos(t)
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σ(t) Φab

t aTb

max(t, 0) 1
2π
‖a‖‖b‖

(
∠(a, b) acos(−∠(a, b)) +

√
1− ∠(a, b)2

)
|t| 2

π
‖a‖‖b‖

(
∠(a, b) asin(∠(a, b)) +

√
1− ∠(a, b)2

)
erf(t) 2

π
asin

(
2aTb√

(1+2‖a‖2)(1+2‖b‖2)

)
1{t>0}

1
2
− 1

2π
acos(∠(a, b))

sign(t) 2
π

asin(∠(a, b))

cos(t) exp(− 1
2
(‖a‖2 + ‖b‖2)) cosh(aTb)

sin(t) exp(− 1
2
(‖a‖2 + ‖b‖2)) sinh(aTb).

Table 1
Values of Φab for w ∼ N (0, Ip), ∠(a, b) ≡ aTb

‖a‖‖b‖ .

Φ(sign(t)) as κ → ∞, inducing that the extension by continuity of erf(κt)
to sign(t) propagates to their associated kernels.

In addition to these results for w ∼ N (0, Ip), we also evaluated Φab =
E[σ(wTa)σ(wTb)] for σ(t) = ζ2t

2 + ζ1t+ ζ0 and w ∈ Rp a vector of indepen-
dent and identically distributed entries of zero mean and moments of order
k equal to mk (so m1 = 0); w is not restricted here to satisfy w ∼ Nϕ(0, Ip).
In this case, we find

Φab = ζ2
2

[
m2

2

(
2(aTb)2 + ‖a‖2‖b‖2

)
+ (m4 − 3m2

2)(a2)T(b2)
]

+ ζ2
1m2a

Tb

+ ζ2ζ1m3

[
(a2)Tb+ aT(b2)

]
+ ζ2ζ0m2

[
‖a‖2 + ‖b‖2

]
+ ζ2

0(5)

where we defined (a2) ≡ [a2
1, . . . , a

2
p]
T.

It is already interesting to remark that, while classical random matrix
models exhibit a well-known universality property — in the sense that their
limiting spectral distribution is independent of the moments (higher than
two) of the entries of the involved random matrix, here W —, for σ(·) a poly-
nomial of order two, Φ and thus µn strongly depend on E[W k

ij ] for k = 3, 4.
We shall see in Section 4 that this remark has troubling consequences. We
will notably infer (and confirm via simulations) that the studied neural net-
work may provably fail to fulfill a specific task if the Wij are Bernoulli with
zero mean and unit variance but succeed with possibly high performance if
the Wij are standard Gaussian (which is explained by the disappearance or
not of the term (aTb)2 and (a2)T(b2) in (5) if m4 = m2

2).

and n/2 neurons with activation function σ(t) = sin(t) implements a Gaussian difference
kernel.
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4. Practical Outcomes. We discuss in this section the outcomes of
our main results in terms of neural network application. The technical dis-
cussions on Theorem 1 and Proposition 1 will be made in the course of their
respective proofs in Section 5.

4.1. Simulation Results. We first provide in this section a simulation
corroborating the findings of Theorem 3 and suggesting the validity of Con-
jecture 1. To this end, we consider the task of classifying the popular MNIST
image database (LeCun, Cortes and Burges, 1998), composed of grayscale
handwritten digits of size 28×28, with a neural network composed of n = 512
units and standard Gaussian W . We represent here each image as a p = 784-
size vector; 1 024 images of sevens and 1 024 images of nines were extracted
from the database and were evenly split in 512 training and test images,
respectively. The database images were jointly centered and scaled so to fall
close to the setting of Assumption 3 on X and X̂ (an admissible preprocess-
ing intervention). The columns of the output values Y and Ŷ were taken
as unidimensional (d = 1) with Y1j , Ŷ1j ∈ {−1, 1} depending on the image
class. Figure 1 displays the simulated (averaged over 100 realizations of W )
versus theoretical values of Etrain and Etest for three choices of Lipschitz
continuous functions σ(·), as a function of γ.

Note that a perfect match between theory and practice is observed, for
both Etrain and Etest, which is a strong indicator of both the validity of
Conjecture 1 and the adequacy of Assumption 3 to the MNIST dataset.

We subsequently provide in Figure 2 the comparison between theoretical
formulas and practical simulations for a set of functions σ(·) which do not
satisfy Assumption 2, i.e., either discontinuous or non-Lipschitz maps. The
closeness between both sets of curves is again remarkably good, although
to a lesser extent than for the Lipschitz continuous functions of Figure 1.
Also, the achieved performances are generally worse than those observed in
Figure 1.

It should be noted that the performance estimates provided by Theorem 3
and Conjecture 1 can be efficiently implemented at low computational cost
in practice. Indeed, by diagonalizing Φ (which is a marginal cost independent
of γ), Ētrain can be computed for all γ through mere vector operations; simi-
larly Ētest is obtained by the marginal cost of a basis change of ΦX̂X and the
matrix product ΦXX̂ΦX̂X , all remaining operations being accessible through
vector operations. As a consequence, the simulation durations to generate
the aforementioned theoretical curves using the linked Python script were

https://github.com/Zhenyu-LIAO/RMT4ELM
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Ētest
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Fig 1. Neural network performance for Lipschitz continuous σ(·), Wij ∼ N (0, 1), as a
function of γ, for 2-class MNIST data (sevens, nines), n = 512, T = T̂ = 1024, p = 784.

found to be 100 to 500 times faster than to generate the simulated net-
work performances. Beyond their theoretical interest, the provided formulas
therefore allow for an efficient offline tuning of the network hyperparameters,
notably the choice of an appropriate value for the ridge-regression parameter
γ.

4.2. The underlying kernel. Theorem 1 and the subsequent theoretical
findings importantly reveal that the neural network performances are di-
rectly related to the Gram matrix Φ, which acts as a deterministic kernel on
the dataset X. This is in fact a well-known result found e.g., in (Williams,
1998) where it is shown that, as n→∞ alone, the neural network behaves as
a mere kernel operator (this observation is retrieved here in the subsequent
Section 4.3). This remark was then put at an advantage in (Rahimi and
Recht, 2007) and subsequent works, where random feature maps of the type
x 7→ σ(Wx) are proposed as a computationally efficient proxy to evaluate
kernels (x, y) 7→ Φ(x, y).

As discussed previously, the formulas for Ētrain and Ētest suggest that
good performances are achieved if the dominant eigenvectors of Φ show a
good alignment to Y (and similarly for ΦXX̂ and Ŷ ). This naturally drives



16 C. LOUART ET AL.
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σ(t) = sign(t)

σ(t) = 1{t>0}

σ(t) = 1− 1
2
t2

γ
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Ētest

Etrain

Etest

Fig 2. Neural network performance for σ(·) either discontinuous or non Lipschitz, Wij ∼
N (0, 1), as a function of γ, for 2-class MNIST data (sevens, nines), n = 512, T = T̂ =
1024, p = 784.

us to finding a priori simple regression tasks where ill-choices of Φ may
annihilate the neural network performance. Following recent works on the
asymptotic performance analysis of kernel methods for Gaussian mixture
models (Couillet and Benaych-Georges, 2016; Zhenyu Liao, 2017; Mai and
Couillet, 2017) and (Couillet and Kammoun, 2016), we describe here such
a task.

Let x1, . . . , xT/2 ∼ N (0, 1
pC1) and xT/2+1, . . . , xT ∼ N (0, 1

pC2) where C1

and C2 are such that trC1 = trC2, ‖C1‖, ‖C2‖ are bounded, and tr(C1 −
C2)2 = O(p). Accordingly, y1, . . . , yT/2+1 = −1 and yT/2+1, . . . , yT = 1. It
is proved in the aforementioned articles that, under these conditions, it is
theoretically possible, in the large p, T limit, to classify the data using a
kernel least-square support vector machine (that is, with a training dataset)
or with a kernel spectral clustering method (that is, in a completely unsu-
pervised manner) with a non-trivial limiting error probability (i.e., neither
zero nor one). This scenario has the interesting feature that xTi xj → 0 al-
most surely for all i 6= j while ‖xi‖2 − 1

p tr(1
2C1 + 1

2C2)→ 0, almost surely,
irrespective of the class of xi, thereby allowing for a Taylor expansion of the
non-linear kernels as early proposed in (El Karoui, 2010).
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Transposed to our present setting, the aforementioned Taylor expan-
sion allows for a consistent approximation Φ̃ of Φ by an information-plus-
noise (spiked) random matrix model (see e.g., (Loubaton and Vallet, 2010;
Benaych-Georges and Nadakuditi, 2012)). In the present Gaussian mixture
context, it is shown in (Couillet and Benaych-Georges, 2016) that data
classification is (asymptotically at least) only possible if Φ̃ij explicitly con-
tains the quadratic term (xTi xj)

2 (or combinations of (x2
i )

Txj , (x2
j )

Txi, and

(x2
i )

T(x2
j )). In particular, letting a, b ∼ N (0, Ci) with i = 1, 2, it is easily

seen from Table 1 that only max(t, 0), |t|, and cos(t) can realize the task.
Indeed, we have the following Taylor expansions around x = 0:

asin(x) = x+O(x3)

sinh(x) = x+O(x3)

acos(x) =
π

2
− x+O(x3)

cosh(x) = 1 +
x2

2
+O(x3)

x acos(−x) +
√

1− x2 = 1 +
πx

2
+
x2

2
+O(x3)

x asin(x) +
√

1− x2 = 1 +
x2

2
+O(x3)

where only the last three functions (only found in the expression of Φab

corresponding to σ(t) = max(t, 0), |t|, or cos(t)) exhibit a quadratic term.
More surprisingly maybe, recalling now Equation (5) which considers non-

necessarily Gaussian Wij with moments mk of order k, a more refined anal-
ysis shows that the aforementioned Gaussian mixture classification task will
fail if m3 = 0 and m4 = m2

2, so for instance for Wij ∈ {−1, 1} Bernoulli
with parameter 1

2 . The performance comparison of this scenario is shown
in the top part of Figure 3 for σ(t) = −1

2 t
2 + 1 and C1 = diag(Ip/2, 4Ip/2),

C2 = diag(4Ip/2, Ip/2), for Wij ∼ N (0, 1) and Wij ∼ Bern (that is, Bernoulli

{(−1, 1
2), (1, 1

2)}). The choice of σ(t) = ζ2t
2 + ζ1t + ζ0 with ζ1 = 0 is mo-

tivated by (Couillet and Benaych-Georges, 2016; Couillet and Kammoun,
2016) where it is shown, in a somewhat different setting, that this choice is
optimal for class recovery. Note that, while the test performances are overall
rather weak in this setting, for Wij ∼ N (0, 1), Etest drops below one (the
amplitude of the Ŷij), thereby indicating that non-trivial classification is
performed. This is not so for the Bernoulli Wij ∼ Bern case where Etest is
systematically greater than |Ŷij |= 1. This is theoretically explained by the
fact that, from Equation (5), Φij contains structural information about the
data classes through the term 2m2

2(xTi xj)
2 + (m4− 3m2

2)(x2
i )

T(x2
j ) which in-
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duces an information-plus-noise model for Φ as long as 2m2
2+(m4−3m2

2) 6= 0,
i.e., m4 6= m2

2 (see (Couillet and Benaych-Georges, 2016) for details). This
is visually seen in the bottom part of Figure 3 where the Gaussian scenario
presents an isolated eigenvalue for Φ with corresponding structured eigen-
vector, which is not the case of the Bernoulli scenario. To complete this
discussion, it appears relevant in the present setting to choose Wij in such a
way that m4−m2

2 is far from zero, thus suggesting the interest of heavy-tailed
distributions. To confirm this prediction, Figure 3 additionally displays the
performance achieved and the spectrum of Φ observed for Wij ∼ Stud, that
is, following a Student-t distribution with degree of freedom ν = 7 normal-
ized to unit variance (in this case m2 = 1 and m4 = 5). Figure 3 confirms
the large superiority of this choice over the Gaussian case (note nonetheless
the slight inaccuracy of our theoretical formulas in this case, which is likely
due to too small values of p, n, T to accommodate Wij with higher order
moments, an observation which is confirmed in simulations when letting ν
be even smaller).

4.3. Limiting cases. We have suggested that Φ contains, in its dominant
eigenmodes, all the usable information describing X. In the Gaussian mix-
ture example above, it was notably shown that Φ may completely fail to
contain this information, resulting in the impossibility to perform a classifi-
cation task, even if one were to take infinitely many neurons in the network.
For Φ containing useful information about X, it is intuitive to expect that
both infγ Ētrain and infγ Ētest become smaller as n/T and n/p become large.
It is in fact easy to see that, if Φ is invertible (which is likely to occur in
most cases if lim infn T/p > 1), then

lim
n→∞

Ētrain = 0

lim
n→∞

Ētest −
1

T̂

∥∥∥Ŷ T − ΦX̂XΦ−1Y T
∥∥∥2

F
= 0

and we fall back on the performance of a classical kernel regression. It is
interesting in particular to note that, as the number of neurons n becomes
large, the effect of γ on Etest flattens out. Therefore, a smart choice of γ
is only relevant for small (and thus computationally more efficient) neuron
layers. This observation is depicted in Figure 4 where it is made clear that
a growth of n reduces Etrain to zero while Etest saturates to a non-zero limit
which becomes increasingly irrespective of γ. Note additionally the interest-
ing phenomenon occurring for n ≤ T where too small values of γ induce
important performance losses, thereby suggesting a strong importance of
proper choices of γ in this regime.
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Fig 3. (Top) Neural network performance for σ(t) = − 1
2
t2 + 1, with different Wij, for a

2-class Gaussian mixture model (see details in text), n = 512, T = T̂ = 1024, p = 256.
(Bottom) Spectra and second eigenvector of Φ for different Wij (first eigenvalues are of
order n and not shown; associated eigenvectors are provably non informative).

Of course, practical interest lies precisely in situations where n is not
too large. We may thus subsequently assume that lim supn n/T < 1. In
this case, as suggested by Figures 1–2, the mean-square error performances
achieved as γ → 0 may predict the superiority of specific choices of σ(·) for
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Fig 4. Neural network performance for growing n (256, 512, 1 024, 2 048, 4 096) as a
function of γ, σ(t) = max(t, 0); 2-class MNIST data (sevens, nines), T = T̂ = 1024,
p = 784. Limiting (n =∞) Ētest shown in thick black line.

optimally chosen γ. It is important for this study to differentiate between
cases where r ≡ rank(Φ) is smaller or greater than n. Indeed, observe that,
with the spectral decomposition Φ = UrΛrU

T
r for Λr ∈ Rr×r diagonal and

Ur ∈ RT×r,

δ =
1

T
tr Φ

(
n

T

Φ

1 + δ
+ γIT

)−1

=
1

T
tr Λr

(
n

T

Λr
1 + δ

+ γIr

)−1

which satisfies, as γ → 0,{
δ → r

n−r , r < n

γδ → ∆ = 1
T tr Φ

(
n
T

Φ
∆ + IT

)−1
, r ≥ n.

A phase transition therefore exists whereby δ assumes a finite positive value
in the small γ limit if r/n < 1, or scales like 1/γ otherwise.

As a consequence, if r < n, as γ → 0, Ψ → n
T (1 − r

n)Φ and Q̄ ∼
T
n−rUrΛ

−1
r UT

r + 1
γVrV

T
r , where Vr ∈ RT×(n−r) is any matrix such that [Ur Vr]

is orthogonal, so that ΨQ̄ → UrU
T
r and ΨQ̄2 → UrΛ

−1
r UT

r ; and thus,
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Ētrain → 1
T trY VrV

T
r Y

T = 1
T ‖Y Vr‖

2
F , which states that the residual train-

ing error corresponds to the energy of Y not captured by the space spanned
by Φ. Since Etrain is an increasing function of γ, so is Ētrain (at least for all
large n) and thus 1

T ‖Y Vr‖
2
F corresponds to the lowest achievable asymptotic

training error.
If instead r > n (which is the most likely outcome in practice), as γ → 0,

Q̄ ∼ 1
γ ( nT

Φ
∆ + IT )−1 and thus

Ētrain
γ→0−→ 1

T
trY Q∆

[
1
n tr Ψ∆Q

2
∆

1− 1
n tr(Ψ∆Q∆)2

Ψ∆ + IT

]
Q∆Y

T

where Ψ∆ = n
T

Φ
∆ and Q∆ = ( nT

Φ
∆ + IT )−1.

These results suggest that neural networks should be designed both in
a way that reduces the rank of Φ while maintaining a strong alignment
between the dominant eigenvectors of Φ and the output matrix Y .

Interestingly, if X is assumed as above to be extracted from a Gaussian
mixture and that Y ∈ R1×T is a classification vector with Y1j ∈ {−1, 1},
then the tools proposed in (Couillet and Benaych-Georges, 2016) (related to
spike random matrix analysis) allow for an explicit evaluation of the afore-
mentioned limits as n, p, T grow large. This analysis is however cumbersome
and outside the scope of the present work.

5. Proof of the Main Results. In the remainder, we shall use exten-
sively the following notations:

Σ = σ(WX) =

σ
T
1
...
σTn

 , W =

w
T
1
...
wT
n


i.e., σi = σ(wT

i X)T. Also, we shall define Σ−i ∈ R(n−1)×T the matrix Σ with
i-th row removed, and correspondingly

Q−i =

(
1

T
ΣTΣ− 1

T
σiσ

T
i + γIT

)−1

.

Finally, because of exchangeability, it shall often be convenient to work with
the generic random vector w ∼ Nϕ(0, IT ), the random vector σ distributed
as any of the σi’s, the random matrix Σ− distributed as any of the Σ−i’s,
and with the random matrix Q− distributed as any of the Q−i’s.



22 C. LOUART ET AL.

5.1. Concentration Results on Σ. Our first results provide concentra-
tion of measure properties on functionals of Σ. These results unfold from
the following concentration inequality for Lipschitz applications of a Gaus-
sian vector; see e.g., (Ledoux, 2005, Corollary 2.6, Propositions 1.3, 1.8) or
(Tao, 2012, Theorem 2.1.12). For d ∈ N, consider µ the canonical Gaus-

sian probability on Rd defined through its density dµ(w) = (2π)−
d
2 e−

1
2
‖w‖2

and f : Rd → R a λf -Lipschitz function. Then, we have the said normal
concentration

µ

({∣∣∣∣f − ∫ fdµ

∣∣∣∣ ≥ t}) ≤ Ce−c t2λ2f(6)

where C, c > 0 are independent of d and λf . As a corollary (see e.g., (Ledoux,
2005, Proposition 1.10)), for every k ≥ 1,

E

[∣∣∣∣f − ∫ fdµ

∣∣∣∣k
]
≤
(
Cλf√
c

)k
.

The main approach to the proof of our results, starting with that of the
key Lemma 1, is as follows: since Wij = ϕ(W̃ij) with W̃ij ∼ N (0, 1) and
ϕ Lipschitz, the normal concentration of W̃ transfers to W which further
induces a normal concentration of the random vector σ and the matrix Σ,
thereby implying that Lipschitz functionals of σ or Σ also concentrate. As
pointed out earlier, these concentration results are used in place for the
independence assumptions (and their multiple consequences on convergence
of random variables) classically exploited in random matrix theory.

Notations: In all subsequent lemmas and proofs, the letters c, ci, C, Ci > 0
will be used interchangeably as positive constants independent of the key
equation parameters (notably n and t below) and may be reused from line to
line. Additionally, the variable ε > 0 will denote any small positive number;
the variables c, ci, C, Ci may depend on ε.

We start by recalling the first part of the statement of Lemma 1 and
subsequently providing its proof.

Lemma 2 (Concentration of quadratic forms). Let Assumptions 1–2
hold. Let also A ∈ RT×T such that ‖A‖ ≤ 1 and, for X ∈ Rp×T and
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w ∼ Nϕ(0, Ip), define the random vector σ ≡ σ(wTX)T ∈ RT . Then,

P

(∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣ > t

)
≤ Ce

− cT

‖X‖2λ2ϕλ2σ
min

(
t2

t20
,t

)

for t0 ≡ |σ(0)|+λϕλσ‖X‖
√

p
T and C, c > 0 independent of all other param-

eters.

Proof. The layout of the proof is as follows: since the application w 7→
1
T σ

TAσ is “quadratic” in w and thus not Lipschitz (therefore not allowing for
a natural transfer of the concentration of w to 1

T σ
TAσ), we first prove that

1√
T
‖σ‖ satisfies a concentration inequality, which provides a high probability

O(1) bound on 1√
T
‖σ‖. Conditioning on this event, the map w 7→ 1√

T
σTAσ

can then be shown to be Lipschitz (by isolating one of the σ terms for
bounding and the other one for retrieving the Lipschitz character) and, up
to an appropriate control of concentration results under conditioning, the
result is obtained.

Following this plan, we first provide a concentration inequality for ‖σ‖.
To this end, note that the application ψ : Rp → RT , w̃ 7→ σ(ϕ(w̃)TX)T is
Lipschitz with parameter λϕλσ‖X‖ as the combination of the λϕ-Lipschitz
function ϕ : w̃ 7→ w, the ‖X‖-Lipschitz map Rn → RT , w 7→ XTw and the
λσ-Lipschitz map RT → RT , Y 7→ σ(Y ). As a Gaussian vector, w̃ has a
normal concentration and so does ψ(w̃). Since the Euclidean norm RT → R,
Y 7→ ‖Y ‖ is 1-Lipschitz, we thus have immediately by (6)

P

(∣∣∣∣∥∥∥∥ 1√
T
σ(wTX)

∥∥∥∥− E

[∥∥∥∥ 1√
T
σ(wTX)

∥∥∥∥]∣∣∣∣ ≥ t) ≤ Ce− cTt2

‖X‖2λ2σλ2ϕ

for some c, C > 0 independent of all parameters.
Finally, using again the Lipschitz character of σ(wTX),∣∣∣∥∥∥σ(wTX)

∥∥∥− ∥∥∥σ(0)1TT

∥∥∥∣∣∣ ≤ ∥∥∥σ(wTX)− σ(0)1TT

∥∥∥ ≤ λσ ‖w‖ · ‖X‖
so that, by Jensen’s inequality,

E

[∥∥∥∥ 1√
T
σ(wTX)

∥∥∥∥] ≤ |σ(0)|+ λσE

[
1√
T
‖w‖

]
‖X‖

≤ |σ(0)|+ λσ

√
E

[
1

T
‖w‖2

]
‖X‖
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with E[‖ϕ(w̃)‖2] ≤ λ2
ϕE[‖w̃‖2] = pλ2

ϕ (since w̃ ∼ N (0, Ip)). Letting t0 ≡
|σ(0)|+ λσλϕ‖X‖

√
p
T , we then find

P

(∥∥∥∥ 1√
T
σ(wTX)

∥∥∥∥ ≥ t+ t0

)
≤ Ce

− cTt2

λ2ϕλ
2
σ‖X‖2

which, with the remark t ≥ 4t0 ⇒ (t − t0)2 ≥ t2/2, may be equivalently
stated as

∀t ≥ 4t0, P

(∥∥∥∥ 1√
T
σ(wTX)

∥∥∥∥ ≥ t) ≤ Ce− cTt2

2λ2ϕλ
2
σ‖X‖2 .(7)

As a side (but important) remark, note that, since

P

(∥∥∥∥ Σ√
T

∥∥∥∥
F

≥ t
√
T

)
= P

√√√√ n∑
i=1

∥∥∥∥ σi√T
∥∥∥∥2

≥ t
√
T


≤ P

(
max

1≤i≤n

∥∥∥∥ σi√T
∥∥∥∥ ≥

√
T

n
t

)

≤ nP

(∥∥∥∥ σ√
T

∥∥∥∥ ≥
√
T

n
t

)

the result above implies that

∀t ≥ 4t0, P

(∥∥∥∥ Σ√
T

∥∥∥∥
F

≥ t
√
T

)
≤ Cne

− cT2t2

2nλ2ϕλ
2
σ‖X‖2

and thus, since ‖ · ‖F ≥ ‖ · ‖, we have

∀t ≥ 4t0, P

(∥∥∥∥ Σ√
T

∥∥∥∥ ≥ t√T) ≤ Cne− cT2t2

2nλ2ϕλ
2
σ‖X‖2

Thus, in particular, under the additional Assumption 3, with high probabil-
ity, the operator norm of Σ√

T
cannot exceed a rate

√
T .

Remark 1 (Loss of control of the structure of Σ). The aforementioned
control of ‖Σ‖ arises from the bound ‖Σ‖ ≤ ‖Σ‖F which may be quite loose
(by as much as a factor

√
T ). Intuitively, under the supplementary Assump-

tion 3, if E[σ] 6= 0, then Σ√
T

is “dominated” by the matrix 1√
T

E[σ]1TT , the

operator norm of which is indeed of order
√
n and the bound is tight. If
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σ(t) = t and E[Wij ] = 0, we however know that ‖ Σ√
T
‖ = O(1) (Bai and Sil-

verstein, 1998). One is tempted to believe that, more generally, if E[σ] = 0,
then ‖ Σ√

T
‖ should remain of this order. And, if instead E[σ] 6= 0, the contri-

bution of 1√
T

E[σ]1TT should merely engender a single large amplitude isolate

singular value in the spectrum of Σ√
T

and the other singular values remain

of order O(1). These intuitions are not captured by our concentration of
measure approach.

Since Σ = σ(WX) is an entry-wise operation, concentration results with
respect to the Frobenius norm are natural, where with respect to the operator
norm are hardly accessible.

Back to our present considerations, let us define the probability space
AK = {w, ‖σ(wTX)‖ ≤ K

√
T}. Conditioning the random variable of inter-

est in Lemma 2 with respect to AK and its complementary AcK , for some
K ≥ 4t0, gives

P

(∣∣∣∣ 1

T
σ(wTX)Aσ(wTX)T − 1

T
tr ΦA

∣∣∣∣ > t

)
≤ P

({∣∣∣∣ 1

T
σ(wTX)Aσ(wTX)T − 1

T
tr ΦA

∣∣∣∣ > t

}
,AK

)
+ P (AcK).

We can already bound P (AcK) thanks to (7). As for the first right-hand
side term, note that on the set {σ(wTX), w ∈ AK}, the function f : RT →
R : σ 7→ σTAσ is K

√
T -Lipschitz. This is because, for all σ, σ + h ∈

{σ(wTX), w ∈ AK},

‖f(σ + h)− f(σ)‖ =
∥∥∥hTAσ + (σ + h)TAh

∥∥∥ ≤ K√T ‖h‖ .
Since conditioning does not allow for a straightforward application of (6),
we consider instead f̃ , a K

√
T -Lipschitz continuation to RT of fAK , the

restriction of f to AK , such that all the radial derivative of f̃ are constant
in the set {σ, ‖σ‖ ≥ K

√
T}. We may thus now apply (6) and our previous

results to obtain

P
(∣∣∣f̃(σ(wTX))− E[f̃(σ(wTX))]

∣∣∣ ≥ KTt) ≤ e− cTt2

‖X‖2λ2σλ2ϕ .

Therefore,

P
({∣∣∣f(σ(wTX))− E[f̃(σ(wTX))]

∣∣∣ ≥ KTt} ,AK)
= P

({∣∣∣f̃(σ(wTX))− E[f̃(σ(wTX))]
∣∣∣ ≥ KTt} ,AK)

≤ P
(∣∣∣f̃(σ(wTX))− E[f̃(σ(wTX))]

∣∣∣ ≥ KTt) ≤ e− cTt2

‖X‖2λ2σλ2ϕ .
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Our next step is then to bound the difference ∆ = |E[f̃(σ(wTX))]−E[f(σ(wTX))]|.
Since f and f̃ are equal on {σ, ‖σ‖ ≤ K

√
T},

∆ ≤
∫
‖σ‖≥K

√
T

(
|f(σ)|+ |f̃(σ)|

)
dµσ(σ)

where µσ is the law of σ(wTX). Since ‖A‖ ≤ 1, for ‖σ‖ ≥ K
√
T , max(|f(σ)|, |f̃(σ)|) ≤

‖σ‖2 and thus

∆ ≤ 2

∫
‖σ‖≥K

√
T
‖σ‖2dµσ = 2

∫
‖σ‖≥K

√
T

∫ ∞
t=0

1‖σ‖2≥tdtdµσ

= 2

∫ ∞
t=0

P
({
‖σ‖2 ≥ t

}
,AcK

)
dt

≤ 2

∫ K2T

t=0
P (AcK)dt+ 2

∫ ∞
t=K2T

P (‖σ(wTX)‖2 ≥ t)dt

≤ 2P (AcK)K2T + 2

∫ ∞
t=K2T

Ce
− ct

2λ2ϕλ
2
σ‖X‖2 dt

≤ 2CTK2e
− cTK2

2λ2ϕλ
2
σ‖X‖2 +

2Cλ2
ϕλ

2
σ‖X‖2

c
e
− cTK2

2λ2ϕλ
2
σ‖X‖2

≤ 6C

c
λ2
ϕλ

2
σ‖X‖2

where in last inequality we used the fact that for x ∈ R, xe−x ≤ e−1 ≤ 1,

and K ≥ 4t0 ≥ 4λσλϕ‖X‖
√

p
T . As a consequence,

P
({∣∣∣f(σ(wTX))− E[f(σ(wTX))]

∣∣∣ ≥ KTt+ ∆
}
,AK

)
≤ Ce

− cTt2

‖X‖2λ2ϕλ2σ

so that, with the same remark as before, for t ≥ 4∆
KT ,

P
({∣∣∣f(σ(wTX))− E[f(σ(wTX))]

∣∣∣ ≥ KTt} ,AK) ≤ Ce− cTt2

2‖X‖2λ2ϕλ2σ .

To avoid the condition t ≥ 4∆
KT , we use the fact that, probabilities being

lower than one, it suffices to replace C by λC with λ ≥ 1 such that

λCe
−c Tt2

2‖X‖2λ2ϕλ2σ ≥ 1 for t ≤ 4∆

KT
.

The above inequality holds if we take for instance λ = 1
C e

18C2

c since then

t ≤ 4∆
KT ≤

24Cλ2ϕλ
2
σ‖X‖2

cKT ≤ 6Cλϕλσ‖X‖
c
√
pT

(using successively ∆ ≥ 6C
c λ

2
ϕλ

2
σ‖X‖2
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and K ≥ 4λσλϕ‖X‖
√

p
T ) and thus

λCe
− cTt2

2‖X‖2λ2ϕλ2σ ≥ λCe−
18C2

cp ≥ λCe−
18C2

c ≥ 1.

Therefore, setting λ = max(1, 1
C e

C′2c
2 ), we get for every t > 0

P
({∣∣∣f(σ(wTX)− E[f(σ(wTX)]

∣∣∣ ≥ KTt} ,AK) ≤ λCe− cTt2

2‖X‖2λ2ϕλ2σ

which, together with the inequality P (AcK) ≤ Ce
− cTK2

2λ2ϕλ
2
σ‖X‖2 , gives

P
(∣∣∣f(σ(wTX)− E[f(σ(wTX)]

∣∣∣ ≥ KTt) ≤ λCe− Tct2

2‖X‖2λ2ϕλ2σ + Ce
− cTK2

2λ2ϕλ
2
σ‖X‖2 .

We then conclude

P

(∣∣∣∣ 1

T
σ(wTX)Aσ(wTX)T − 1

T
tr(ΦA)

∣∣∣∣ ≥ t)
≤ (λ+ 1)Ce

− cT

2‖X‖2λ2ϕλ2σ
min(t2/K2,K2)

and, with K = max(4t0,
√
t),

P

(∣∣∣∣ 1

T
σ(wTX)Aσ(wTX)T − 1

T
tr(ΦA)

∣∣∣∣ ≥ t) ≤ (λ+ 1)Ce
−
cT min

(
t2

16t20

,t

)
2‖X‖2λ2ϕλ2σ .

Indeed, if 4t0 ≤
√
t then min(t2/K2,K2) = t, while if 4t0 ≥

√
t then

min(t2/K2,K2) = min(t2/16t20, 16t20) = t2/16t20.

As a corollary of Lemma 2, we have the following control of the moments
of 1

T σ
TAσ.

Corollary 1 (Moments of quadratic forms). Let Assumptions 1–2
hold. For w ∼ Nϕ(0, Ip), σ ≡ σ(wTX)T ∈ RT , A ∈ RT×T such that ‖A‖ ≤ 1,
and k ∈ N,

E

[∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣k
]
≤ C1

(
t0η√
T

)k
+ C2

(
η2

T

)k
with t0 = |σ(0)|+λσλϕ‖X‖

√
p
T , η = ‖X‖λσλϕ, and C1, C2 > 0 independent

of the other parameters. In particular, under the additional Assumption 3,

E

[∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣k
]
≤ C

nk/2
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Proof. We use the fact that, for a nonnegative random variable Y ,
E[Y ] =

∫∞
0 P (Y > t)dt, so that

E

[∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣k
]

=

∫ ∞
0

P

(∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣k > u

)
du

=

∫ ∞
0

kvk−1P

(∣∣∣∣ 1

T
σTAσ − 1

T
tr ΦA

∣∣∣∣ > v

)
dv

≤
∫ ∞

0
kvk−1Ce

− cT
η2

min

(
v2

t20
,v

)
dv

≤
∫ t0

0
kvk−1Ce

− cTv
2

t20η
2
dv +

∫ ∞
t0

kvk−1Ce
− cTv

η2 dv

≤
∫ ∞

0
kvk−1Ce

− cTv
2

t20η
2
dv +

∫ ∞
0

kvk−1Ce
− cTv

η2 dv

=

(
t0η√
cT

)k ∫ ∞
0

ktk−1Ce−t
2
dt+

(
η2

cT

)k ∫ ∞
0

ktk−1Ce−tdt

which, along with the boundedness of the integrals, concludes the proof.

Beyond concentration results on functions of the vector σ, we also have
the following convenient property for functions of the matrix Σ.

Lemma 3 (Lipschitz functions of Σ). Let f : Rn×T → R be a λf -
Lipschitz function with respect to the Froebnius norm. Then, under Assump-
tions 1–2,

P

(∣∣∣∣f ( Σ√
T

)
− Ef

(
Σ√
T

)∣∣∣∣ > t

)
≤ Ce

− cTt2

λ2σλ
2
ϕλ

2
f
‖X‖2

for some C, c > 0. In particular, under the additional Assumption 3,

P

(∣∣∣∣f ( Σ√
T

)
− Ef

(
Σ√
T

)∣∣∣∣ > t

)
≤ Ce−cT t2 .

Proof. Denoting W = ϕ(W̃ ), since vec(W̃ ) ≡ [W̃11, · · · , W̃np] is a Gaus-
sian vector, by the normal concentration of Gaussian vectors, for g a λg-
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Lipschitz function of W with respect to the Frobenius norm (i.e., the Eu-
clidean norm of vec(W )), by (6),

P (|g(W )− E[g(W )]| > t) = P
(∣∣∣g(ϕ(W̃ ))− E[g(ϕ(W̃ ))]

∣∣∣ > t
)
≤ Ce

− ct2

λ2gλ
2
ϕ

for some C, c > 0. Let’s consider in particular g : W 7→ f(Σ/
√
T ) and

remark that

|g(W +H)− g(W )| =
∣∣∣∣f (σ((W +H)X)√

T

)
− f

(
σ(WX)√

T

)∣∣∣∣
≤

λf√
T
‖σ((W +H)X)− σ(WX)‖F

≤
λfλσ√
T
‖HX‖F

=
λfλσ√
T

√
trHXXTHT

≤
λfλσ√
T

√
‖XXT‖‖H‖F

concluding the proof.

A first corollary of Lemma 3 is the concentration of the Stieltjes transform
1
T tr

(
1
T ΣTΣ− zIT

)−1
of µn, the empirical spectral measure of 1

T ΣTΣ, for all
z ∈ C \ R+ (so in particular, for z = −γ, γ > 0).

Corollary 2 (Concentration of the Stieltjes transform of µn). Under
Assumptions 1–2, for z ∈ C \ R+,

P

(∣∣∣∣∣ 1

T
tr

(
1

T
ΣTΣ− zIT

)−1

− E

[
1

T
tr

(
1

T
ΣTΣ− zIT

)−1
]∣∣∣∣∣ > t

)

≤ Ce
− cdist(z,R

+)2Tt2

λ2σλ
2
ϕ‖X‖2

for some C, c > 0, where dist(z,R+) is the Hausdorff set distance. In par-
ticular, for z = −γ, γ > 0, and under the additional Assumption 3

P

(∣∣∣∣ 1

T
trQ− 1

T
tr E[Q]

∣∣∣∣ > t

)
≤ Ce−cnt2 .
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Proof. We can apply Lemma 3 for f : R 7→ 1
T tr(RTR − zIT )−1, since

we have

|f(R+H)− f(R)|

=

∣∣∣∣ 1

T
tr((R+H)T(R+H)− zIT )−1((R+H)TH +HTR)(RTR− zIT )−1

∣∣∣∣
≤
∣∣∣∣ 1

T
tr((R+H)T(R+H)− zIT )−1(R+H)TH(RTR− zIT )−1

∣∣∣∣
+

∣∣∣∣ 1

T
tr((R+H)T(R+H)− zIT )−1HTR(RTR− zIT )−1

∣∣∣∣
≤ 2‖H‖

dist(z,R+)
3
2

≤ 2‖H‖F
dist(z,R+)

3
2

where, for the second to last inequality, we successively used the relations
| trAB| ≤

√
trAAT

√
trBBT, | trCD| ≤ ‖D‖ trC for nonnegative definite

C, and ‖(RTR − zIT )−1‖ ≤ dist(z,R+)−1, ‖(RTR − zIT )−1RTR‖ ≤ 1,

‖(RTR− zIT )−1RT‖ = ‖(RTR− zIT )−1RTR(RTR− zIT )−1‖
1
2 ≤ ‖(RTR−

zIT )−1RTR‖
1
2 ‖(RTR−zIT )−1‖

1
2 ≤ dist(z,R+)−

1
2 , for z ∈ C\R+, and finally

‖ · ‖ ≤ ‖ · ‖F .

Lemma 3 also allows for an important application of Lemma 2 as follows.

Lemma 4 (Concentration of 1
T σ

TQ−σ). Let Assumptions 1–3 hold and
write WT = [w1, . . . , wn]. Define σ ≡ σ(wT

1X)T ∈ RT and, for WT
− =

[w2, . . . , wn] and Σ− = σ(W−X), let Q− = ( 1
T ΣT
−Σ− + γIT )−1. Then, for

A,B ∈ RT×T such that ‖A‖, ‖B‖ ≤ 1

P

(∣∣∣∣ 1

T
σTAQ−Bσ −

1

T
tr ΦAE[Q−]B

∣∣∣∣ > t

)
≤ Ce−cnmin(t2,t)

for some C, c > 0 independent of the other parameters.

Proof. Let f : R 7→ 1
T σ

TA(RTR + γIT )−1Bσ. Reproducing the proof
of Corollary 2, conditionally to 1

T ‖σ‖
2 ≤ K for any arbitrary large enough

K > 0, it appears that f is Lipschitz with parameter of order O(1). Along
with (7) and Assumption 3, this thus ensures that

P

(∣∣∣∣ 1

T
σTAQ−Bσ −

1

T
σTAE[Q−]Bσ

∣∣∣∣ > t

)
≤ P

(∣∣∣∣ 1

T
σTAQ−Bσ −

1

T
σTAE[Q−]Bσ

∣∣∣∣ > t,
‖σ‖2

T
≤ K

)
+ P

(
‖σ‖2

T
> K

)
≤ Ce−cnt2
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for some C, c > 0. We may then apply Lemma 1 on the bounded norm
matrix AE[Q−]B to further find that

P

(∣∣∣∣ 1

T
σTAQ−Bσ −

1

T
tr ΦAE[Q−]B

∣∣∣∣ > t

)
≤ P

(∣∣∣∣ 1

T
σTAQ−Bσ −

1

T
σTAE[Q−]Bσ

∣∣∣∣ > t

2

)
+ P

(∣∣∣∣ 1

T
σTAE[Q−]Bσ − 1

T
tr ΦAE[Q−]B

∣∣∣∣ > t

2

)
≤ C ′e−c′nmin(t2,t)

which concludes the proof.

As a further corollary of Lemma 3, we have the following concentration
result on the training mean-square error of the neural network under study.

Corollary 3 (Concentration of the mean-square error). Under As-
sumptions 1–3,

P

(∣∣∣∣ 1

T
trY TY Q2 − 1

T
trY TY E

[
Q2
]∣∣∣∣ > t

)
≤ Ce−cnt2

for some C, c > 0 independent of the other parameters.

Proof. We apply Lemma 3 to the mapping f : R 7→ 1
T trY TY (RTR +

γIT )−2. Denoting Q = (RTR+γIT )−1 and QH = ((R+H)T(R+H)+γIT )−1,
remark indeed that

|f(R+H)− f(R)|

=

∣∣∣∣ 1

T
trY TY ((QH)2 −Q2)

∣∣∣∣
≤
∣∣∣∣ 1

T
trY TY (QH −Q)QH

∣∣∣∣+

∣∣∣∣ 1

T
trY TY Q(QH −Q)

∣∣∣∣
=

∣∣∣∣ 1

T
trY TY QH((R+H)T(R+H)−RTR)QQH

∣∣∣∣
+

∣∣∣∣ 1

T
trY TY QQH((R+H)T(R+H)−RTR)Q

∣∣∣∣
≤
∣∣∣∣ 1

T
trY TY QH(R+H)THQQH

∣∣∣∣+

∣∣∣∣ 1

T
trY TY QHHTRQQH

∣∣∣∣
+

∣∣∣∣ 1

T
trY TY QQH(R+H)TRQ

∣∣∣∣+

∣∣∣∣ 1

T
trY TY QQHHTRQ

∣∣∣∣ .
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As ‖QH(R+H)T‖ =
√
‖QH(R+H)T(R+H)QH‖ and ‖RQ‖ =

√
‖QRTRQ‖

are bounded and 1
T trY TY is also bounded by Assumption 3, this implies

|f(R+H)− f(R)| ≤ C‖H‖ ≤ C‖H‖F
for some C > 0. The function f is thus Lipschitz with parameter independent
of n, which allows us to conclude using Lemma 3.

The aforementioned concentration results are the building blocks of the
proofs of Theorem 1–3 which, under all Assumptions 1–3, are established
using standard random matrix approaches.

5.2. Asymptotic Equivalents.

5.2.1. First Equivalent for E[Q]. This section is dedicated to a first char-
acterization of E[Q], in the “simultaneously large” n, p, T regime. This pre-
liminary step is classical in studying resolvents in random matrix theory as
the direct comparison of E[Q] to Q̄ with the implicit δ may be cumbersome.
To this end, let us thus define the intermediary deterministic matrix

Q̃ =

(
n

T

Φ

1 + α
+ γIT

)−1

with α ≡ 1
T tr ΦE[Q−], where we recall that Q− is a random matrix dis-

tributed as, say, ( 1
T ΣTΣ− 1

T σ1σ
T
1 + γIT )−1.

First note that, since 1
T tr Φ = E[ 1

T ‖σ‖
2] and, from (7) and Assump-

tion 3, P ( 1
T ‖σ‖

2 > t) ≤ Ce−cnt
2

for all large t, we find that 1
T tr Φ =∫∞

0 t2P ( 1
T ‖σ‖

2 > t)dt ≤ C ′ for some constant C ′. Thus, α ≤ ‖E[Q−]‖ 1
T tr Φ ≤

C′

γ is uniformly bounded.

We will show here that ‖E[Q] − Q̃‖ → 0 as n → ∞ in the regime of
Assumption 3. As the proof steps are somewhat classical, we defer to the
appendix some classical intermediary lemmas (Lemmas 5–7). Using the re-
solvent identity, Lemma 5, we start by writing

E[Q]− Q̃ = E

[
Q

(
n

T

Φ

1 + α
− 1

T
ΣTΣ

)]
Q̃

= E[Q]
n

T

Φ

1 + α
Q̃− E

[
Q

1

T
ΣTΣ

]
Q̃

= E[Q]
n

T

Φ

1 + α
Q̃− 1

T

n∑
i=1

E
[
Qσiσ

T
i

]
Q̃
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which, from Lemma 6, gives, for Q−i = ( 1
T ΣTΣ− 1

T σiσ
T
i + γIT )−1,

E[Q]− Q̃ = E[Q]
n

T

Φ

1 + α
Q̃− 1

T

n∑
i=1

E

[
Q−i

σiσ
T
i

1 + 1
T σ

T
i Q−iσi

]
Q̃

= E[Q]
n

T

Φ

1 + α
Q̃− 1

1 + α

1

T

n∑
i=1

E
[
Q−iσiσ

T
i

]
Q̃

+
1

T

n∑
i=1

E

[
Q−iσiσ

T
i

(
1
T σ

T
i Q−iσi − α

)
(1 + α)(1 + 1

T σ
T
i Q−iσi)

]
Q̃.

Note now, from the independence of Q−i and σiσ
T
i , that the second right-

hand side expectation is simply E[Q−i]Φ. Also, exploiting Lemma 6 in re-
verse on the rightmost term, this gives

E[Q]− Q̃ =
1

T

n∑
i=1

E[Q−Q−i]Φ
1 + α

Q̃

+
1

1 + α

1

T

n∑
i=1

E

[
Qσiσ

T
i Q̃

(
1

T
σTi Q−iσi − α

)]
.(8)

It is convenient at this point to note that, since E[Q]− Q̃ is symmetric, we
may write

E[Q]− Q̃ =
1

2

1

1 + α

(
1

T

n∑
i=1

(
E[Q−Q−i]ΦQ̃+ Q̃ΦE[Q−Q−i]

)
+

1

T

n∑
i=1

E

[(
Qσiσ

T
i Q̃+ Q̃σiσ

T
i Q
)( 1

T
σTi Q−iσi − α

)])
.(9)

We study the two right-hand side terms of (9) independently.
For the first term, since Q−Q−i = −Q 1

T σiσ
T
i Q−i,

1

T

n∑
i=1

E[Q−Q−i]Φ
1 + α

Q̃ =
1

1 + α

1

T
E

[
Q

1

T

n∑
i=1

σiσ
T
i Q−i

]
ΦQ̃

=
1

1 + α

1

T
E

[
Q

1

T

n∑
i=1

σiσ
T
i Q

(
1 +

1

T
σTi Q−iσi

)]
ΦQ̃

where we used again Lemma 6 in reverse. DenotingD = diag({1+ 1
T σ

T
i Q−iσi}ni=1),

this can be compactly written

1

T

n∑
i=1

E[Q−Q−i]Φ
1 + α

Q̃ =
1

1 + α

1

T
E

[
Q

1

T
ΣTDΣQ

]
ΦQ̃.
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Note at this point that, from Lemma 7, ‖ΦQ̃‖ ≤ (1 + α)Tn and

∥∥∥∥Q 1√
T

ΣT

∥∥∥∥ =

√∥∥∥∥Q 1

T
ΣTΣQ

∥∥∥∥ ≤ γ− 1
2 .

Besides, by Lemma 4 and the union bound,

P

(
max

1≤i≤n
Dii > 1 + α+ t

)
≤ Cne−cnmin(t2,t)

for some C, c > 0, so in particular, recalling that α ≤ C ′ for some constant
C ′ > 0,

E

[
max

1≤i≤n
Dii

]
=

∫ 2(1+C′)

0
P

(
max

1≤i≤n
Dii > t

)
dt+

∫ ∞
2(1+C′)

P

(
max

1≤i≤n
Dii > t

)
dt

≤ 2(1 + C ′) +

∫ ∞
2(1+C′)

Cne−cnmin((t−(1+C′))2,t−(1+C′))dt

= 2(1 + C ′) +

∫ ∞
1+C′

Cne−cntdt

= 2(1 + C ′) + e−Cn(1+C′) = O(1).

As a consequence of all the above (and of the boundedness of α), we have
that, for some c > 0,

1

T

∥∥∥∥E

[
Q

1

T
ΣTDΣQ

]
ΦQ̃

∥∥∥∥ ≤ c

n
.(10)

Let us now consider the second right-hand side term of (9). Using the
relation abT + baT � aaT + bbT in the order of Hermitian matrices (which

unfolds from (a− b)(a− b)T � 0), we have, with a = T
1
4Qσi(

1
T σ

T
i Q−iσi−α)

and b = T−
1
4 Q̃σi,

1

T

n∑
i=1

E

[(
Qσiσ

T
i Q̃+ Q̃σiσ

TQ
)( 1

T
σTi Q−iσi − α

)]

� 1√
T

n∑
i=1

E

[
Qσiσ

T
i Q

(
1

T
σTi Q−iσi − α

)2
]

+
1

T
√
T

n∑
i=1

E
[
Q̃σiσ

T
i Q̃
]

=
√
TE

[
Q

1

T
ΣTD2

2ΣQ

]
+

n

T
√
T
Q̃ΦQ̃
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where D2 = diag({ 1
T σ

T
i Q−iσi−α}ni=1). Of course, since we also have −aaT−

bbT � abT + baT (from (a+ b)(a+ b)T � 0), we have symmetrically

1

T

n∑
i=1

E

[(
Qσiσ

T
i Q̃+ Q̃σiσ

TQ
)( 1

T
σTi Q−iσi − α

)]
� −
√
TE

[
Q

1

T
ΣTD2

2ΣQ

]
− n

T
√
T
Q̃ΦQ̃.

But from Lemma 4,

P
(
‖D2‖ > tnε−

1
2

)
= P

(
max

1≤i≤n

∣∣∣∣ 1

T
σTi Q−iσi − α

∣∣∣∣ > tnε−
1
2

)
≤ Cne−cmin(n2εt2,n

1
2+εt)

so that, with a similar reasoning as in the proof of Corollary 1,∥∥∥∥√TE

[
Q

1

T
ΣTD2

2ΣQ

]∥∥∥∥ ≤ √TE
[
‖D2‖2

]
≤ Cnε′−

1
2

where we additionally used ‖QΣ‖ ≤
√
T in the first inequality.

Since in addition
∥∥∥ n
T
√
T
Q̃ΦQ̃

∥∥∥ ≤ Cn− 1
2 , this gives∥∥∥∥∥ 1

T

n∑
i=1

E

[(
Qσiσ

T
i Q̃+ Q̃σiσ

T
i Q
)( 1

T
σTi Q−iσi − α

)]∥∥∥∥∥ ≤ Cnε− 1
2 .

Together with (9), we thus conclude that∥∥∥E[Q]− Q̃
∥∥∥ ≤ Cnε− 1

2 .

Note in passing that we proved that

‖E [Q−Q−]‖ =
T

n

∥∥∥∥∥ 1

T

n∑
i=1

E [Q−Q−i]

∥∥∥∥∥ =

∥∥∥∥ 1

n
E

[
Q

1

T
ΣTDΣQ

]∥∥∥∥ ≤ c

n

where the first equality holds by exchangeability arguments.
In particular,

α =
1

T
tr ΦE[Q−] =

1

T
tr ΦE[Q] +

1

T
tr Φ(E[Q−]− E[Q])
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where | 1T tr Φ(E[Q−]− E[Q])| ≤ c
n . And thus, by the previous result,∣∣∣∣α− 1

T
tr ΦQ̃

∣∣∣∣ ≤ Cn− 1
2

+ε 1

T
tr Φ.

We have proved in the beginning of the section that 1
T tr Φ is bounded and

thus we finally conclude that∥∥∥∥α− 1

T
tr ΦQ̃

∥∥∥∥ ≤ Cnε− 1
2 .

5.2.2. Second Equivalent for E[Q]. In this section, we show that E[Q]
can be approximated by the matrix Q̄, which we recall is defined as

Q̄ =

(
n

T

Φ

1 + δ
+ γIT

)−1

where δ > 0 is the unique positive solution to δ = 1
T tr ΦQ̄. The fact that

δ > 0 is well defined is quite standard and has already been proved several
times for more elaborate models. Following the ideas of (Hoydis, Couillet and
Debbah, 2013), we may for instance use the framework of so-called standard
interference functions (Yates, 1995) which claims that, if a map f : [0,∞)→
(0,∞), x 7→ f(x), satisfies x ≥ x′ ⇒ f(x) ≥ f(x′), ∀a > 1, af(x) > f(ax)
and there exists x0 such that x0 ≥ f(x0), then f has a unique fixed point
(Yates, 1995, Th 2). It is easily shown that δ 7→ 1

T tr ΦQ̄ is such a map, so
that δ exists and is unique.

To compare Q̃ and Q̄, using the resolvent identity, Lemma 5, we start by
writing

Q̃− Q̄ = (α− δ)Q̃ n
T

Φ

(1 + α)(1 + δ)
Q̄

from which

|α− δ| =
∣∣∣∣ 1

T
tr Φ

(
E[Q−]− Q̄

)∣∣∣∣
≤
∣∣∣∣ 1

T
tr Φ

(
Q̃− Q̄

)∣∣∣∣+ cn−
1
2

+ε

= |α− δ| 1

T
tr

ΦQ̃ n
T ΦQ̄

(1 + α)(1 + δ)
+ cn−

1
2

+ε
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which implies that

|α− δ|

(
1− 1

T
tr

ΦQ̃ n
T ΦQ̄

(1 + α)(1 + δ)

)
≤ cn−

1
2

+ε.

It thus remains to show that

lim sup
n

1

T
tr

ΦQ̃ n
T ΦQ̄

(1 + α)(1 + δ)
< 1

to prove that |α− δ| ≤ cnε−
1
2 . To this end, note that, by Cauchy–Schwarz’s

inequality,

1

T
tr

ΦQ̃ n
T ΦQ̄

(1 + α)(1 + δ)
≤

√
n

T (1 + δ)2

1

T
tr Φ2Q̄2 · n

T (1 + α)2

1

T
tr Φ2Q̃2

so that it is sufficient to bound the limsup of both terms under the square
root strictly by one. Next, remark that

δ =
1

T
tr ΦQ̄ =

1

T
tr ΦQ̄2Q̄−1 =

n(1 + δ)

T (1 + δ)2

1

T
tr Φ2Q̄2 + γ

1

T
tr ΦQ̄2.

In particular,

n

T (1 + δ)2

1

T
tr Φ2Q̄2 =

δ n
T (1+δ)2

1
T tr Φ2Q̄2

(1 + δ) n
T (1+δ)2

1
T tr Φ2Q̄2 + γ 1

T tr ΦQ̄2
≤ δ

1 + δ
.

But at the same time, since ‖( nT Φ + γIT )−1‖ ≤ γ−1,

δ ≤ 1

γT
tr Φ

the limsup of which is bounded. We thus conclude that

lim sup
n

n

T (1 + δ)2

1

T
tr Φ2Q̄2 < 1.(11)

Similarly, α, which is known to be bounded, satisfies

α = (1 + α)
n

T (1 + α)2

1

T
tr Φ2Q̃2 + γ

1

T
tr ΦQ̃2 +O(nε−

1
2 )

and we thus have also

lim sup
n

n

T (1 + α)2

1

T
tr Φ2Q̃2 < 1
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which completes to prove that |α− δ| ≤ cnε−
1
2 .

As a consequence of all this,

‖Q̃− Q̄‖ = |α− δ| ·

∥∥∥∥∥ Q̃ n
T ΦQ̄

(1 + α)(1 + δ)

∥∥∥∥∥ ≤ cn− 1
2

+ε

and we have thus proved that ‖E[Q]− Q̄‖ ≤ cn−
1
2

+ε for some c > 0.

From this result, along with Corollary 2, we now have that

P

(∣∣∣∣ 1

T
trQ− 1

T
tr Q̄

∣∣∣∣ > t

)
≤ P

(∣∣∣∣ 1

T
trQ− 1

T
tr E[Q]

∣∣∣∣ > t−
∣∣∣∣ 1

T
tr E[Q]− 1

T
tr Q̄

∣∣∣∣)
≤ C ′e−c′n(t−cn−

1
2+ε) ≤ C ′e−

1
2
c′nt

for all large n. As a consequence, for all γ > 0, 1
T trQ − 1

T tr Q̄ → 0
almost surely. As such, the difference mµn − mµ̄n of Stieltjes transforms
mµn : C \ R+ → C, z 7→ 1

T tr( 1
T ΣTΣ − zIT )−1 and mµ̄n : C \ R+ → C,

z 7→ 1
T tr( nT

Φ
1+δz

− zIT )−1 (with δz the unique Stieltjes transform solution

to δz = 1
T tr Φ( nT

Φ
1+δz

− zIT )−1) converges to zero for each z in a subset of
C \ R+ having at least one accumulation point (namely R−), almost surely
so (that is, on a probability set Az with P (Az) = 1). Thus, letting {zk}∞k=1

be a converging sequence strictly included in R−, on the probability one
space A = ∩∞k=1Ak, mµn(zk) − mµ̄n(zk) → 0 for all k. Now, mµn is com-
plex analytic on C \ R+ and bounded on all compact subsets of C \ R+.
Besides, it was shown in (Silverstein and Bai, 1995; Silverstein and Choi,
1995) that the function mµ̄n is well-defined, complex analytic and bounded
on all compact subsets of C \R+. As a result, on A, mµn −mµ̄n is complex
analytic, bounded on all compact subsets of C \ R+ and converges to zero
on a subset admitting at least one accumulation point. Thus, by Vitali’s
convergence theorem (Titchmarsh, 1939), with probability one, mµn −mµ̄n

converges to zero everywhere on C \ R+. This implies, by (Bai and Silver-
stein, 2009, Theorem B.9), that µn − µ̄n → 0, vaguely as a signed finite
measure, with probability one, and, since µ̄n is a probability measure (again
from the results of (Silverstein and Bai, 1995; Silverstein and Choi, 1995)),
we have thus proved Theorem 2.

5.2.3. Asymptotic Equivalent for E[QAQ], where A is either Φ or sym-
metric of bounded norm. The evaluation of the second order statistics of
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the neural network under study requires, beside E[Q], to evaluate the more
involved form E[QAQ], where A is a symmetric matrix either equal to Φ
or of bounded norm (so in particular ‖Q̄A‖ is bounded). To evaluate this
quantity, first write

E[QAQ] = E
[
Q̄AQ

]
+ E

[
(Q− Q̄)AQ

]
= E

[
Q̄AQ

]
+ E

[
Q

(
n

T

Φ

1 + δ
− 1

T
ΣTΣ

)
Q̄AQ

]
= E

[
Q̄AQ

]
+
n

T

1

1 + δ
E
[
QΦQ̄AQ

]
− 1

T

n∑
i=1

E
[
Qσiσ

T
i Q̄AQ

]
.

Of course, since QAQ is symmetric, we may write

E[QAQ] =
1

2

(
E
[
Q̄AQ+QAQ̄

]
+
n

T

1

1 + δ
E
[
QΦQ̄AQ+QAQ̄ΦQ

]
− 1

T

n∑
i=1

E
[
Qσiσ

T
i Q̄AQ+QAQ̄σiσ

T
i Q
])

which will reveal more practical to handle.
First note that, since

∥∥E[Q]− Q̄
∥∥ ≤ Cnε−

1
2 and A is such that ‖Q̄A‖ is

bounded, ‖E[Q̄AQ]− Q̄AQ̄]‖ ≤ ‖Q̄A‖‖E[Q]− Q̄‖ ≤ C ′nε−
1
2 , which provides

an estimate for the first expectation. We next evaluate the last right-hand
side expectation above. With the same notations as previously, from ex-
changeability arguments and using Q = Q− −Q 1

T σσ
TQ−, observe that

1

T

n∑
i=1

E
[
Qσiσ

T
i Q̄AQ

]
=
n

T
E
[
QσσTQ̄AQ

]
=
n

T
E

[
Q−σσ

TQ̄AQ

1 + 1
T σ

TQ−σ

]
=
n

T

1

1 + δ
E
[
Q−σσ

TQ̄AQ
]

+
n

T

1

1 + δ
E

[
Q−σσ

TQ̄AQ
δ − 1

T σ
TQ−σ

1 + 1
T σ

TQ−σ

]



40 C. LOUART ET AL.

which, reusing Q = Q− −Q 1
T σσ

TQ−, is further decomposed as

1

T

n∑
i=1

E
[
Qσiσ

T
i Q̄AQ

]
=
n

T

1

1 + δ
E
[
Q−σσ

TQ̄AQ−

]
− n

T 2

1

1 + δ
E

[
Q−σσ

TQ̄AQ−σσ
TQ−

1 + 1
T σ

TQ−σ

]

+
n

T
E

[
Q−σσ

TQ̄AQ−
δ − 1

T σ
TQ−σ

(1 + δ)
(
1 + 1

T σ
TQ−σ

)]

− n

T 2
E

[
Q−σσ

TQ̄AQ−σσ
TQ−

(
δ − 1

T σ
TQ−σ

)
(1 + δ)

(
1 + 1

T σ
TQ−σ

)2
]

=
n

T

1

1 + δ
E
[
Q−ΦQ̄AQ−

]
− n

T

1

1 + δ
E

[
Q−σσ

TQ−

1
T σ

TQ̄AQ−σ

1 + 1
T σ

TQ−σ

]

+
n

T
E

[
Q−

σσT
(
δ − 1

T σ
TQ−σ

)
(1 + δ)

(
1 + 1

T σ
TQ−σ

)Q̄AQ−]

− n

T
E

[
Q−σσ

TQ−

1
T σ

TQ̄AQ−σ
(
δ − 1

T σ
TQ−σ

)
(1 + δ)

(
1 + 1

T σ
TQ−σ

)2
]

≡ Z1 + Z2 + Z3 + Z4

(where in the previous to last line, we have merely reorganized the terms
conveniently) and our interest is in handling Z1 + ZT

1 + Z2 + ZT
2 + Z3 +

ZT
3 + Z4 + ZT

4 . Let us first treat term Z2. Since Q̄AQ− is bounded, by
Lemma 4, 1

T σ
TQ̄AQ−σ concentrates around 1

T tr ΦQ̄AE[Q−]; but, as ‖ΦQ̄‖
is bounded, we also have | 1T tr ΦQ̄AE[Q−]− 1

T tr ΦQ̄AQ̄| ≤ cnε−
1
2 . We thus

deduce, with similar arguments as previously, that

−Q−σσTQ−Cnε−
1
2 � Q−σσTQ−

[
1
T σ

TQ̄AQ−σ

1 + 1
T σ

TQ−σ
−

1
T tr ΦQ̄AQ̄

1 + δ

]
� Q−σσTQ−Cnε−

1
2

with probability exponentially close to one, in the order of symmetric ma-
trices. Taking expectation and norms on both sides, and conditioning on the
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aforementioned event and its complementary, we thus have that∥∥∥∥∥E

[
Q−σσ

TQ−

1
T σ

TQ̄AQ−σ

1 + 1
T σ

TQ−σ

]
− E [Q−ΦQ−]

1
T tr ΦQ̄AQ̄

1 + δ

∥∥∥∥∥
≤ ‖E [Q−ΦQ−]‖Cnε−

1
2 + C ′ne−cn

ε′

≤ ‖E [Q−ΦQ−]‖C ′′nε−
1
2

But, again by exchangeability arguments,

E[Q−ΦQ−] = E[Q−σσ
TQ−] = E

[
QσσTQ

(
1 +

1

T
σTQ−σ

)2
]

=
T

n
E

[
Q

1

T
ΣTD2ΣQ

]
with D = diag({1 + 1

T σ
T
i Q−σi}), the operator norm of which is bounded as

O(1). So finally,∥∥∥∥∥E

[
Q−σσ

TQ−

1
T σ

TQ̄AQ−σ

1 + 1
T σ

TQ−σ

]
− E [Q−ΦQ−]

1
T tr ΦQ̄AQ̄

1 + δ

∥∥∥∥∥ ≤ Cnε− 1
2 .

We now move to term Z3 +ZT
3 . Using the relation abT + baT � aaT + bbT,

E

[
(δ − 1

T
σTQ−σ)

Q−σσ
TQ̄AQ− +Q−AQ̄σσ

TQ−

(1 + 1
T σ

TQ−σ)2

]

�
√
nE

[
(δ − 1

T σ
TQ−σ)2

(1 + 1
T σ

TQ−σ)4
Q−σσ

TQ−

]
+

1√
n

E
[
Q−AQ̄σσ

TQ̄AQ−

]
=
√
n
T

n
E

[
Q

1

T
ΣTD2

3ΣQ

]
+

1√
n

E
[
Q−AQ̄ΦQ̄AQ−

]
and the symmetrical lower bound (equal to the opposite of the upper bound),
where D3 = diag((δ − 1

T σ
T
i Q−iσi)/(1 + 1

T σ
T
i Q−iσi)). For the same reasons

as above, the first right-hand side term is bounded by Cnε−
1
2 . As for the

second term, for A = IT , it is clearly bounded; for A = Φ, using n
T
Q̄Φ
1+δ =

IT − γQ̄, E[Q−AQ̄ΦQ̄AQ−] can be expressed in terms of E[Q−ΦQ−] and
E[Q−Q̄

kΦQ−] for k = 1, 2, all of which have been shown to be bounded (at
most by Cnε). We thus conclude that∥∥∥∥∥E

[(
δ − 1

T
σTQ−σ

)
Q−σσ

TQ̄AQ− +Q−AQ̄σσ
TQ−

(1 + 1
T σ

TQ−σ)2

]∥∥∥∥∥ ≤ Cnε− 1
2 .
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Finally, term Z4 can be handled similarly as term Z2 and is shown to be
of norm bounded by Cnε−

1
2 .

As a consequence of all the above, we thus find that

E [QAQ] = Q̄AQ̄+
n

T

E
[
QΦQ̄AQ

]
1 + δ

− n

T

E
[
Q−ΦQ̄AQ−

]
1 + δ

+
n

T

1
T tr ΦQ̄AQ̄

(1 + δ)2
E[Q−ΦQ−] +O(nε−

1
2 ).

It is attractive to feel that the sum of the second and third terms above
vanishes. This is indeed verified by observing that, for any matrix B,

E [QBQ]− E [Q−BQ] =
1

T
E
[
QσσTQ−BQ

]
=

1

T
E

[
QσσTQBQ

(
1 +

1

T
σTQ−σ

)]
=

1

n
E

[
Q

1

T
ΣTDΣQBQ

]
and symmetrically

E [QBQ]− E [QBQ−] =
1

n
E

[
QBQ

1

T
ΣTDΣQ

]
with D = diag(1 + 1

T σ
T
i Q−iσi), and a similar reasoning is performed to

control E[Q−BQ]−E[Q−BQ−] and E[QBQ−]−E[Q−BQ−]. For B bounded,
‖E[Q 1

T ΣTDΣQBQ]‖ is bounded as O(1), and thus ‖E[QBQ]−E[Q−BQ−]‖
is of order O(n−1). So in particular, taking A of bounded norm, we find that

E [QAQ] = Q̄AQ̄+
n

T

1
T tr ΦQ̄AQ̄

(1 + δ)2
E[Q−ΦQ−] +O(nε−

1
2 ).

Take now B = Φ. Then, from the relation ABT +BAT � AAT +BBT in
the order of symmetric matrices,∥∥∥∥E [QΦQ]− 1

2
E [Q−ΦQ+QΦQ−]

∥∥∥∥
=

1

2n

∥∥∥∥E

[
Q

1

T
ΣTDΣQΦQ+QΦQ

1

T
ΣTDΣQ

]∥∥∥∥
≤ 1

2n

(∥∥∥∥E

[
Q

1

T
ΣTDΣQ

1

T
ΣTDΣQ

]∥∥∥∥+ ‖E [QΦQΦQ]‖
)
.
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The first norm in the parenthesis is bounded by Cnε and it thus remains
to control the second norm. To this end, similar to the control of E[QΦQ],
by writing E[QΦQΦQ] = E[Qσ1σ

T
1 Qσ2σ

T
2 Q] for σ1, σ2 independent vectors

with the same law as σ, and exploiting the exchangeability, we obtain after
some calculus that E[QΦQ] can be expressed as the sum of terms of the form
E[Q++

1
T ΣT

++DΣ++Q++] or E[Q++
1
T ΣT

++DΣ++Q++
1
T ΣT

++D2Σ++Q++] for
D,D2 diagonal matrices of norm bounded as O(1), while Σ++ and Q++ are
similar as Σ and Q, only for n replaced by n+2. All these terms are bounded
as O(1) and we finally obtain that E[QΦQΦQ] is bounded and thus∥∥∥∥E [QΦQ]− 1

2
E [Q−ΦQ+QΦQ−]

∥∥∥∥ ≤ C

n
.

With the additional control on QΦQ− −Q−ΦQ− and Q−ΦQ−Q−ΦQ−,
together, this implies that E[QΦQ] = E[Q−ΦQ−]+O‖·‖(n

−1). Hence, forA =

Φ, exploiting the fact that n
T

1
1+δΦQ̄Φ = Φ−γQ̄Φ, we have the simplification

E [QΦQ] = Q̄ΦQ̄+
n

T

E
[
QΦQ̄ΦQ

]
1 + δ

− n

T

E
[
Q−ΦQ̄ΦQ−

]
1 + δ

+
n

T

1
T tr Φ2Q̄2

(1 + δ)2
E[Q−ΦQ−] +O‖·‖(n

ε− 1
2 )

= Q̄ΦQ̄+
n

T

1
T tr Φ2Q̄2

(1 + δ)2
E[QΦQ] +O‖·‖(n

ε− 1
2 ).

or equivalently

E [QΦQ]

(
1− n

T

1
T tr Φ2Q̄2

(1 + δ)2

)
= Q̄ΦQ̄+O‖·‖(n

ε− 1
2 ).

We have already shown in (11) that lim supn
n
T

1
T

tr Φ2Q̄2

(1+δ)2
< 1 and thus

E [QΦQ] =
Q̄ΦQ̄

1− n
T

1
T

tr Φ2Q̄2

(1+δ)2

+O‖·‖(n
ε− 1

2 ).

So finally, for all A of bounded norm,

E [QAQ] = Q̄AQ̄+
n

T

1
T tr ΦQ̄AQ̄

(1 + δ)2

Q̄ΦQ̄

1− n
T

1
T

tr Φ2Q̄2

(1+δ)2

+O(nε−
1
2 )

which proves immediately Proposition 1 and Theorem 3.
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5.3. Derivation of Φab.

5.3.1. Gaussian w. In this section, we evaluate the terms Φab provided
in Table 1. The proof for the term corresponding to σ(t) = erf(t) can be
already be found in (Williams, 1998, Section 3.1) and is not recalled here.
For the other functions σ(·), we follow a similar approach as in (Williams,
1998), as detailed next.

The evaluation of Φab for w ∼ N (0, Ip) requires to estimate

I ≡ (2π)−
p
2

∫
Rp
σ(wTa)σ(wTb)e−

1
2
‖w‖2dw.

Assume that a and b and not linearly dependent. It is convenient to ob-
serve that this integral can be reduced to a two-dimensional integration by
considering the basis e1, . . . , ep defined (for instance) by

e1 =
a

‖a‖
, e2 =

b
‖b‖ −

aTb
‖a‖‖b‖

a
‖a‖√

1− (aTb)2

‖a‖2‖b‖2

and e3, . . . , ep any completion of the basis. By letting w = w̃1e1 + . . .+ w̃pep

and a = ã1e1 (ã1 = ‖a‖), b = b̃1e1 + b̃2e2 (where b̃1 = aTb
‖a‖ and b̃2 =

‖b‖
√

1− (aTb)2

‖a‖2‖b‖2 ), this reduces I to

I =
1

2π

∫
R

∫
R
σ(w̃1ã1)σ(w̃1b̃1 + w̃2b̃2)e−

1
2

(w̃2
1+w̃2

2)dw̃1dw̃2.

Letting w̃ = [w̃1, w̃2]T, ã = [ã1, 0]T and b̃ = [b̃1, b̃2]T, this is conveniently
written as the two-dimensional integral

I =
1

2π

∫
R2

σ(w̃Tã)σ(w̃Tb̃)e−
1
2
‖w̃‖2dw̃.

The case where a and b would be linearly dependent can then be obtained
by continuity arguments.

The function σ(t) = max(t, 0). For this function, we have

I =
1

2π

∫
min(w̃Tã,w̃Tb̃)≥0

w̃Tã · w̃Tb̃ · e−
1
2
‖w̃‖2dw̃.

Since ã = ã1e1, a simple geometric representation lets us observe that{
w̃ | min(w̃Tã, w̃Tb̃) ≥ 0

}
=
{
r cos(θ)e1 + r sin(θ)e2 | r ≥ 0, θ ∈ [θ0 −

π

2
,
π

2
]
}
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where we defined θ0 ≡ arccos
(
b̃1
‖b̃‖

)
= − arcsin

(
b̃1
‖b̃‖

)
+ π

2 . We may thus oper-

ate a polar coordinate change of variable (with inverse Jacobian determinant
equal to r) to obtain

I =
1

2π

∫ π
2

θ0−π2

∫
R+

(r cos(θ)ã1)
(
r cos(θ)b̃1 + r sin(θ)b̃2

)
re−

1
2
r2dθdr

= ã1
1

2π

∫ π
2

θ0−π2
cos(θ)

(
cos(θ)b̃1 + sin(θ)b̃2

)
dθ

∫
R+

r3e−
1
2
r2dr.

With two integration by parts, we have that
∫
R+ r

3e−
1
2
r2dr = 2. Classical

trigonometric formulas also provide∫ π
2

θ0−π2
cos(θ)2dθ =

1

2
(π − θ0) +

1

2
sin(2θ0)

=
1

2

(
π − arccos

(
b̃1

‖b̃‖

)
+

b̃1

‖b̃‖
b̃2

‖b̃‖

)
∫ π

2

θ0−π2
cos(θ) sin(θ)dθ =

1

2
sin2(θ0) =

1

2

(
b̃2

‖b̃‖

)2

where we used in particular sin(2 arccos(x)) = 2x
√

1− x2. Altogether, this
is after simplification and replacement of ã1, b̃1 and b̃2,

I =
1

2π
‖a‖‖b‖

(√
1− ∠(a, b)2 + ∠(a, b) arccos(−∠(a, b))

)
.

It is worth noticing that this may be more compactly written as

I =
1

2π
‖a‖‖b‖

∫ ∠(a,b)

−1
arccos(−x)dx.

which is minimum for ∠(a, b) → −1 (since arccos(−x) ≥ 0 on [−1, 1]) and
takes there the limiting value zero. Hence I > 0 for a and b not linearly
dependent.

For a and b linearly dependent, we simply have I = 0 for ∠(a, b) = −1
and I = 1

2‖a‖‖b‖ for ∠(a, b) = 1.

The function σ(t) = |t|. Since |t| = max(t, 0) + max(−t, 0), we have

|wTa| · |wTb| = max(wTa, 0) max(wTb, 0) + max(wT(−a), 0) max(wT(−b), 0)

+ max(wT(−a), 0) max(wTb, 0) + max(wTa, 0) max(wT(−b), 0).
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Hence, reusing the results above, we have here

I =
‖a‖‖b‖

2π

(
4
√

1− ∠(a, b)2 + 2∠(a, b) acos(−∠(a, b))− 2∠(a, b) acos(∠(a, b))
)
.

Using the identity acos(−x) − acos(x) = 2 asin(x) provides the expected
result.

The function σ(t) = 1t≥0. With the same notations as in the case σ(t) =
max(t, 0), we have to evaluate

I =
1

2π

∫
min(w̃Tã,w̃Tb̃)≥0

e−
1
2
‖w̃‖2dw̃.

After a polar coordinate change of variable, this is

I =
1

2π

∫ π
2

θ0−π2
dθ

∫
R+

re−
1
2
r2dr =

1

2
− θ0

2π

from which the result unfolds.

The function σ(t) = sign(t). Here it suffices to note that sign(t) = 1t≥0 −
1−t≥0 so that

σ(wTa)σ(wTb) = 1wTa≥01wTb≥0 + 1wT(−a)≥01wT(−b)≥0

− 1wT(−a)≥01wTb≥0 − 1wTa≥01wT(−b)≥0

and to apply the result of the previous section, with either (a, b), (−a, b),
(a,−b) or (−a,−b). Since arccos(−x) = − arccos(x) + π, we conclude that

I = (2π)−
p
2

∫
Rp

sign(wTa)sign(wTb)e−
1
2
‖w‖2dw = 1− 2θ0

π
.

The functions σ(t) = cos(t) and σ(t) = sin(t).. Let us first consider σ(t) =
cos(t). We have here to evaluate

I =
1

2π

∫
R2

cos
(
w̃Tã

)
cos
(
w̃Tb̃

)
e−

1
2
‖w̃‖2dw̃

=
1

8π

∫
R2

(
eıw̃

Tã + e−ıw̃
Tã
)(

eıw̃
Tb̃ + e−ıw̃

Tb̃
)
e−

1
2
‖w̃‖2dw̃

which boils down to evaluating, for d ∈ {ã + b̃, ã − b̃,−ã + b̃,−ã − b̃}, the
integral

e−
1
2
‖d‖2

∫
R2

e−
1
2
‖w̃−ıd‖2dw̃ = (2π)e−

1
2
‖d‖2 .
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Altogether, we find

I =
1

2

(
e−

1
2
‖a+b‖2 + e−

1
2
‖a−b‖2

)
= e−

1
2

(‖a‖+‖b‖2)cosh(aTb).

For σ(t) = sin(t), it suffices to appropriately adapt the signs in the ex-
pression of I (using the relation sin(t) = 1

2ı(e
t + e−t)) to obtain in the end

I =
1

2

(
e−

1
2
‖a+b‖2 + e−

1
2
‖a−b‖2

)
= e−

1
2

(‖a‖+‖b‖2)sinh(aTb)

as desired.

5.4. Polynomial σ(·) and generic w. In this section, we prove Equation 5
for σ(t) = ζ2t

2 + ζ1t+ ζ0 and w ∈ Rp a random vector with independent and
identically distributed entries of zero mean and moment of order k equal to
mk. The result is based on standard combinatorics. We are to evaluate

Φab = E
[(
ζ2(wTa)2 + ζ1w

Ta+ ζ0

)(
ζ2(wTb)2 + ζ1w

Tb+ ζ0

)]
.

After development, it appears that one needs only assess, for say vectors
c, d ∈ Rp that take values in {a, b}, the moments

E[(wTc)2(wTd)2] =
∑

i1i2j1j2

ci1ci2dj1dj2E[wi1wi2wj1wj2 ]

=
∑
i1

m4c
2
i1d

2
i1 +

∑
i1 6=j1

m2
2c

2
i1d

2
j1 + 2

∑
i1 6=i2

m2
2ci1di1ci2di2

=
∑
i1

m4c
2
i1d

2
i1 +

∑
i1j1

−
∑
i1=j1

m2
2c

2
i1d

2
j1

+ 2

∑
i1i2

−
∑
i1 6=i2

m2
2ci1di1ci2di2

= m4(c2)T(d2) +m2
2(‖c‖2‖d‖2 − (c2)T(d2))

+ 2m2
2

(
(cTd)2 − (c2)T(d2)

)
= (m4 − 3m2

2)(c2)T(d2) +m2
2

(
‖c‖2‖d‖2 + 2(cTd)2

)
E
[
(wTc)2(wTd)

]
=
∑
i1i2j

ci1ci2djE[wi1wi2wj ] =
∑
i1

m3c
2
i1di1 = m3(c2)d

E
[
(wTc)2

]
=
∑
i1i2

ci1ci2E[wi1wi2 ] = m2‖c‖2

where we recall the definition (a2) = [a2
1, . . . , a

2
p]
T. Gathering all the terms

for appropriate selections of c, d leads to (5).
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5.5. Heuristic derivation of Conjecture 1. Conjecture 1 essentially fol-
lows as an aftermath of Remark 1. We believe that, similar to Σ, Σ̂ is ex-
pected to be of the form Σ̂ = Σ̂◦ + ˆ̄σ1T

T̂
, where ˆ̄σ = E[σ(wTX̂)]T, with

‖ Σ̂◦√
T
‖ ≤ nε with high probability. Besides, if X, X̂ were chosen as consti-

tuted of Gaussian mixture vectors, with non-trivial growth rate conditions
as introduced in (Couillet and Benaych-Georges, 2016), it is easily seen that
σ̄ = c1p + v and ˆ̄σ = c1p + v̂, for some constant c and ‖v‖, ‖v̂‖ = O(1).

This subsequently ensures that ΦXX̂ and ΦX̂X̂ would be of a similar form
Φ◦
XX̂

+ σ̄ ˆ̄σT and Φ◦
X̂X̂

+ ˆ̄σ ˆ̄σT with Φ◦
XX̂

and Φ◦
X̂X̂

of bounded norm. These
facts, that would require more advanced proof techniques, let envision the
following heuristic derivation for Conjecture 1.

Recall that our interest is on the test performance Etest defined as

Etest =
1

T̂

∥∥∥Ŷ T − Σ̂Tβ
∥∥∥2

F

which may be rewritten as

Etest =
1

T̂
tr
(
Ŷ Ŷ T

)
− 2

T T̂
tr
(
Y QΣTΣ̂Ŷ T

)
+

1

T 2T̂
tr
(
Y QΣTΣ̂Σ̂TΣQY T

)
≡ Z1 − Z2 + Z3.

(12)

If Σ̂ = Σ̂◦+ ˆ̄σ1T
T̂

follows the aforementioned claimed operator norm control,
reproducing the steps of Corollary 3 leads to a similar concentration for
Etest, which we shall then admit. We are therefore left to evaluating E[Z2]
and E[Z3].
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We start with the term E[Z2], which we expand as

E[Z2] =
2

T T̂
E
[
tr(Y QΣTΣ̂Ŷ T)

]
=

2

T T̂

n∑
i=1

[
tr(Y Qσiσ̂

T
i Ŷ

T)
]

=
2

T T̂

n∑
i=1

E

[
tr

(
Y Q−iσiσ̂

T
i Ŷ

T

1 + 1
T σ

T
i Q−iσi

)]

=
2

T T̂

1

1 + δ

n∑
i=1

E
[
tr
(
Y Q−iσiσ̂

T
i Ŷ

T
)]

+
2

T T̂

1

1 + δ

n∑
i=1

E

[
tr
(
Y Q−iσiσ̂

T
i Ŷ

T
) δ − 1

T σ
T
i Q−iσi

1 + 1
T σ

T
i Q−iσi

]

=
2n

T T̂

1

1 + δ
tr
(
Y E[Q−]ΦXX̂ Ŷ

T
)

+
2

T T̂

1

1 + δ
E
[
tr
(
Y QΣTDΣ̂Ŷ T

)]
≡ Z21 + Z22

with D = diag({δ− 1
T σ

T
i Q−iσi}), the operator norm of which is bounded by

nε−
1
2 with high probability. Now, observe that, again with the assumption

that Σ̂ = Σ̂◦ + σ̄1T
T̂

with controlled Σ̂◦, Z22 may be decomposed as

2

T T̂

1

1 + δ
E
[
tr
(
Y QΣTDΣ̂Ŷ T

)]
=

2

T T̂

1

1 + δ
E
[
tr
(
Y QΣTDΣ̂◦Ŷ T

)]
+

2

T T̂

1

1 + δ
1T
T̂
Ŷ TE

[
Y QΣTDσ̄

]
.

In the display above, the first right-hand side term is now of order O(nε−
1
2 ).

As for the second right-hand side term, note that Dσ̄ is a vector of inde-
pendent and identically distributed zero mean and variance O(n−1) entries;
while note formally independent of Y QΣT, it is nonetheless expected that
this independence “weakens” asymptotically (a behavior several times ob-
served in linear random matrix models), so that one expects by central limit

arguments that the second right-hand side term be also of order O(nε−
1
2 ).

This would thus result in

E[Z2] =
2n

T T̂

1

1 + δ
tr
(
Y E[Q−]ΦXX̂ Ŷ

T
)

+O(nε−
1
2 )

=
2n

T T̂

1

1 + δ
tr
(
Y Q̄ΦXX̂ Ŷ

T
)

+O(nε−
1
2 )

=
2

T̂
tr
(
Y Q̄ΨXX̂ Ŷ

T
)

+O(nε−
1
2 )
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where we used ‖E[Q−]− Q̄‖ ≤ Cnε−
1
2 and the definition ΨXX̂ = n

T

ΦXX̂
1+δ .

We then move on to E[Z3] of Equation (12), which can be developed as

E[Z3] =
1

T 2T̂
E
[
tr
(
Y QΣTΣ̂Σ̂TΣQY T

)]
=

1

T 2T̂

n∑
i,j=1

E
[
tr
(
Y Qσiσ̂

T
i σ̂jσ

T
j QY

T
)]

=
1

T 2T̂

n∑
i,j=1

E

[
tr

(
Y

Q−iσiσ̂
T
i

1 + 1
T σ

T
i Q−iσi

σ̂jσ
T
j Q−j

1 + 1
T σ

T
j Q−jσj

Y T

)]

=
1

T 2T̂

n∑
i=1

∑
j 6=i

E

[
tr

(
Y

Q−iσiσ̂
T
i

1 + 1
T σ

T
i Q−iσi

σ̂jσ
T
j Q−j

1 + 1
T σ

T
j Q−jσj

Y T

)]

+
1

T 2T̂

n∑
i=1

E

[
tr

(
Y
Q−iσiσ̂

T
i σ̂iσ

T
i Q−i

(1 + 1
T σ

T
i Q−iσi)

2
Y T

)]
≡ Z31 + Z32.

In the term Z32, reproducing the proof of Lemma 1 with the condition

‖X̂‖ bounded, we obtain that
σ̂T
i σ̂i

T̂
concentrates around 1

T̂
tr ΦX̂X̂ , which

allows us to write

Z32 =
1

T 2T̂

n∑
i=1

E

[
tr

(
Y
Q−iσi tr(ΦX̂X̂)σTi Q−i

(1 + 1
T σ

T
i Q−iσi)

2
Y T

)]

+
1

T 2T̂

n∑
i=1

E

[
tr

(
Y
Q−iσi

(
σ̂Ti σ̂i − tr ΦT̂

)
σTi Q−i

(1 + 1
T σ

T
i Q−iσi)

2
Y T

)]

=
1

T 2

tr(ΦX̂X̂)

T̂

n∑
i=1

E

[
tr

(
Y

Q−iσiσ
T
i Q−i

(1 + 1
T σ

T
i Q−iσi)

2
Y T

)]

+
1

T 2

n∑
i=1

E

[
tr

(
Y Qσi

(
σ̂Ti σ̂i − tr ΦT̂

T̂

)
σTi QY

T

)]
≡ Z321 + Z322

with D = diag({ 1
T̂
σTi σ̂i − 1

T̂
tr ΦT̂ T̂ }

n
i=1) and thus Z322 can be rewritten as

Z322 =
1

T
E

[
tr

(
Y
QΣT

√
T
D

ΣQ√
T
Y T

)]
= O(nε−

1
2 )
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while for Z321, following the same arguments as previously, we have

Z321 =
1

T 2

tr ΦX̂X̂

T̂

n∑
i=1

E

[
tr

(
Y

Q−iσiσ
T
i Q−i

(1 + 1
T σ

T
i Q−iσi)

2
Y T

)]

=
1

T 2

tr ΦX̂X̂

T̂

n∑
i=1

1

(1 + δ)2
E
[
tr
(
Y Q−iσiσ

T
i Q−iY

T
)]

+
1

T 2

tr ΦX̂X̂

T̂

n∑
i=1

1

(1 + δ)2
E

[
tr
(
Y Qσiσ

T
i QY

T
)(

(1 + δ)2 − (1 +
1

T
σTi Q−iσi)

2

)]

=
1

T 2

tr ΦX̂X̂

T̂

n∑
i=1

1

(1 + δ)2
E
[
tr
(
Y Q−iΦXQ−iY

T
)]

+
1

T 2

tr ΦX̂X̂

T̂

n∑
i=1

1

(1 + δ)2
E
[
tr
(
Y QΣTDΣQY T

)]
=

n

T 2
E
[
tr
(
Y Q−ΦXQ−Y

T
)] tr(ΦX̂X̂)

T̂ (1 + δ)2
+O(nε−

1
2 )

where D = diag({(1 + δ)2 − (1 + 1
T σ

T
i Q−iσi)

2}ni=1).

Since E[Q−AQ−] = E[QAQ] + O‖·‖(n
ε− 1

2 ), we are free to plug in the
asymptotic equivalent of E[QAQ] derived in Section 5.2.3, and we deduce

Z32 =
n

T 2
E

[
trY

(
Q̄ΦXQ̄+

Q̄ΨXQ̄ · 1
n tr

(
ΨXQ̄ΦXQ̄

)
1− 1

n tr
(
Ψ2
XQ̄

2
) )

Y T

]
tr(ΦX̂X̂)

T̂ (1 + δ)2

=
1
n tr

(
Y Q̄ΨXQ̄Y

T
)

1− 1
n tr

(
Ψ2
XQ̄

2
) 1

T̂
tr(ΨX̂X̂) +O(nε−

1
2 ).

The term Z31 of the double sum over i and j (j 6= i) needs more efforts.
To handle this term, we need to remove the dependence of both σi and σj
in Q in sequence. We start with j as follows:

Z31 =
1

T 2T̂

n∑
i=1

∑
j 6=i

E

[
tr

(
Y Qσiσ̂

T
i

σ̂jσ
T
j Q−j

1 + 1
T σ

T
j Q−jσj

Y T

)]

=
1

T 2T̂

n∑
i=1

∑
j 6=i

E

[
tr

(
Y Q−jσiσ̂

T
i

σ̂jσ
T
j Q−j

1 + 1
T σ

T
j Q−jσj

Y T

)]

− 1

T 3T̂

n∑
i=1

∑
j 6=i

E

[
tr

(
Y
Q−jσjσ

T
j Q−jσiσ̂

T
i

1 + 1
T σ

T
j Q−jσj

σ̂jσ
T
j Q−j

1 + 1
T σ

T
j Q−jσj

Y T

)]
≡ Z311 − Z312
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where in the previous to last inequality we used the relation

Q = Q−j −
Q−jσjσ

T
j Q−j

1 + 1
T σ

T
j Q−jσj

.

For Z311, we replace 1 + 1
T σ

T
j Q−jσj by 1 + δ and take expectation over wj

Z311 =
1

T 2T̂

n∑
i=1

∑
j 6=i

E

[
tr

(
Y Q−jσiσ̂

T
i

σ̂jσ
T
j Q−j

1 + 1
T σ

T
j Q−jσj

Y T

)]

=
1

T 2T̂

n∑
j=1

E

[
tr

(
Y
Q−jΣ

T
−jΣ̂−j σ̂jσ

T
j Q−j

1 + 1
T σ

T
j Q−jσj

Y T

)]

=
1

T 2T̂

1

1 + δ

n∑
j=1

E
[
tr
(
Y Q−jΣ

T
−jΣ̂−j σ̂jσ

T
j Q−jY

T
)]

+
1

T 2T̂

1

1 + δ

n∑
j=1

E

[
tr

(
Y
Q−jΣ

T
−jΣ̂−j σ̂jσ

T
j Q−j(δ − 1

T σ
T
j Q−jσj)

1 + 1
T σ

T
j Q−jσj

Y T

)]
≡ Z3111 + Z3112.

The idea to handle Z3112 is to retrieve forms of the type
∑n

j=1 dj σ̂jσ
T
j =

Σ̂TDΣ for some D satisfying ‖D‖ ≤ nε−
1
2 with high probability. To this

end, we use

Q−j
ΣT
−jΣ̂−j

T
= Q−j

ΣTΣ̂

T
−Q−j

σj σ̂
T
j

T

= Q
ΣTΣ̂

T
+

Qσjσ
T
j Q

1− 1
T σ

T
j Qσj

ΣTΣ̂

T
−Q−j

σj σ̂
T
j

T

and thus Z3112 can be expanded as the sum of three terms that shall be
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studied in order:

Z3112 =
1

T 2T̂

1

1 + δ

n∑
j=1

E

[
tr

(
Y
Q−jΣ

T
−jΣ̂−j σ̂jσ

T
j Q−j(δ − 1

T σ
T
j Q−jσj)

1 + 1
T σ

T
j Q−jσj

Y T

)]

=
1

T T̂

1

1 + δ
E

[
tr

(
Y Q

ΣTΣ̂

T
Σ̂TDΣQY T

)]

+
1

T T̂

1

1 + δ

n∑
j=1

E

[
tr

(
Y
Qσjσ

T
j QΣTΣ̂σ̂j(δ − 1

T σ
T
j Q−jσj)σ

T
j Q

T (1− 1
T σ

T
j Qσj)

Y T

)]

− 1

T 2T̂

1

1 + δ

n∑
j=1

E

[
tr

(
Y Qσj σ̂

T
j σ̂jσ

T
j Q(δ − 1

T
σTj Q−jσj)(1 +

1

T
σTj Q−jσj)Y

T

)]
≡ Z31121 + Z31122 − Z31123.

where D = diag({δ− 1
T σ

T
j Q−jσj}ni=1). First, Z31121 is of order O(nε−

1
2 ) since

QΣTΣ̂
T is of bounded operator norm. Subsequently, Z31122 can be rewritten

as

Z31122 =
1

T̂

1

1 + δ
E

[
tr

(
Y Q

ΣTDΣ

T
QY T

)]
= O(nε−

1
2 )

with here

D = diag


(
δ − 1

T σ
T
j Q−jσj

)(
1
T tr

(
Q−j

ΣT
−jΣ̂−j
T ΦX̂X

)
+ 1

T tr (Q−jΦ) 1
T tr ΦX̂X̂

)
(1− 1

T σ
T
j Qσj)(1 + 1

T σ
T
j Q−jσj)


n

i=1

.

The same arguments apply for Z31123 but for

D = diag

{
tr ΦX̂X̂

T
(δ − 1

T
σTj Q−jσj)(1 +

1

T
σTj Q−jσj)

}n
i=1

which completes to show that |Z3112| ≤ Cnε−
1
2 and thus

Z311 = Z3111 +O(nε−
1
2 )

=
1

T 2T̂

1

1 + δ

n∑
j=1

E
[
tr
(
Y Q−jΣ

T
−jΣ̂−j σ̂jσ

T
j Q−jY

T
)]

+O(nε−
1
2 ).
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It remains to handle Z3111. Under the same claims as above, we have

Z3111 =
1

T T̂

1

1 + δ

n∑
j=1

E

[
tr

(
Y Q−j

ΣT
−jΣ̂−j

T
ΦX̂XQ−jY

T

)]

=
1

T T̂

1

1 + δ

n∑
j=1

∑
i 6=j

E

[
tr

(
Y Q−j

σiσ̂
T
i

T
ΦX̂XQ−jY

T

)]

=
1

T 2T̂

1

1 + δ

n∑
j=1

∑
i 6=j

E

[
tr

(
Y

Q−ijσiσ̂
T
i

1 + 1
T σ

T
i Q−ijσi

ΦX̂XQ−ijY
T

)]

− 1

T 3T̂

1

1 + δ

n∑
j=1

∑
i 6=j

E

[
tr

(
Y

Q−ijσiσ̂
T
i

1 + 1
T σ

T
i Q−ijσi

ΦX̂X

Q−ijσiσ
T
i Q−ij

1 + 1
T σ

T
i Q−ijσi

Y T

)]
≡ Z31111 − Z31112

where we introduced the notation Q−ij = ( 1
T ΣTΣ− 1

T σiσ
T
i − 1

T σjσ
T
j +γIT )−1.

For Z31111, we replace 1
T σ

T
i Q−ijσi by δ, and take the expectation over wi,
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as follows

Z31111 =
1

T 2T̂

1

1 + δ

n∑
j=1

∑
i 6=j

E

[
tr

(
Y

Q−ijσiσ̂
T
i

1 + 1
T σ

T
i Q−ijσi

ΦX̂XQ−ijY
T

)]

=
1

T 2T̂

1

(1 + δ)2

n∑
j=1

∑
i 6=j

E
[
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(
Y Q−ijσiσ̂

T
i ΦX̂XQ−ijY

T
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+
1

T 2T̂

1
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n∑
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∑
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E

[
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Y
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T
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T
i Q−ijσi)

1 + 1
T σ

T
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=
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1
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E
[
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(
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T
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+
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1
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n∑
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∑
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E

[
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(
Y Q−jσiσ̂

T
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T
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+
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1

(1 + δ)2

n∑
j=1

∑
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E

[
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T
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=
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1
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E
[
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(
Y Q−−ΦXX̂ΦX̂XQ−−Y
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+
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1
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[
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(
Y Q−jΣ

T
−jDΣ̂−jΦX̂XQ−jY
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+
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T 2T̂

1
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E
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Y Q−jΣ
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−jD
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+O(nε−
1
2 )

=
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T 2T̂

1

(1 + δ)2
E
[
tr
(
Y Q−−ΦXX̂ΦX̂XQ−−Y

T
)]

+O(nε−
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2 )

with Q−− having the same law as Q−ij , D = diag({δ − 1
T σ

T
i Q−ijσi}ni=1)

and D′ = diag

{
(δ− 1

T
σT
i Q−ijσi)

1
T

tr(ΦX̂XQ−ijΦXX̂)
(1− 1

T
σT
i Q−jσi)(1+ 1

T
σT
i Q−ijσi)

}n
i=1

, both expected to be of

order O(nε−
1
2 ). Using again the asymptotic equivalent of E[QAQ] devised

in Section 5.2.3, we then have

Z31111 =
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1
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tr
(
ΨXQ̄ΨXX̂ΨX̂XQ̄
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+O(nε−
1
2 ).
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Following the same principle, we deduce for Z31112 that

Z31112 =
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withDi = 1
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ΦX̂XQ−ijΦXX̂

) [
(1 + δ)2 − (1 + 1
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T
i Q−ijσi)

2
]
, also believed

to be of order O(nε−
1
2 ). Recalling the fact that Z311 = Z3111 +O(nε−

1
2 ), we

can thus conclude for Z311 that
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As for Z312, we have
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.

Since Q−j
1
T ΣT
−jΣ̂−j is expected to be of bounded norm, using the concen-



A RANDOM MATRIX APPROACH TO NEURAL NETWORKS 57

tration inequality of the quadratic form 1
T σ

T
j Q−j
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−jΣ̂−j
T σ̂j , we infer
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We again replace 1
T σ

T
j Q−jσj by δ and take expectation over wj to obtain
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with Dj = (1 + δ)2 − (1 + 1
T σ

T
j Q−jσj)

2 = O(nε−
1
2 ), which eventually brings

the second term to vanish, and we thus get
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For the term 1
T 2 tr
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)
we apply again the concentration

inequality to get
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with high probability, where D = diag({δ − 1
T σ

T
i Q−ijσi}ni=1), the norm of

which is of order O(nε−
1
2 ). This entails

1
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tr
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)
=

n
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1

1 + δ
tr
(
ΦX̂XE[Q−−]ΦXX̂

)
+O(nε−

1
2 )

with high probability. Once more plugging the asymptotic equivalent of
E[QAQ] deduced in Section 5.2.3, we conclude for Z312 that
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1
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) 1
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T
)
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and eventually for Z31
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1
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)

+
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n tr

(
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)

1− 1
n tr(Ψ2
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− 2
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) 1
n tr

(
Y Q̄ΨXQ̄Y

T
)
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n tr(Ψ2

XQ̄
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1
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Combining the estimates of E[Z2] as well as Z31 and Z32, we finally have
the estimates for the test error defined in (12) as

Etest =
1

T̂

∥∥∥Ŷ T −ΨT
XX̂

Q̄Y T
∥∥∥2

F

+
1
n tr

(
Y Q̄ΨXQ̄Y

T
)

1− 1
n tr(Ψ2

XQ̄
2)

[
1

T̂
tr ΨX̂X̂ +

1

T̂
tr
(
ΨXQ̄ΨXX̂ΨX̂XQ̄

)
− 2

T̂
tr
(
ΨX̂X̂Q̄ΨXX̂

)]
+O(nε−

1
2 ).

Since by definition, Q̄ = (ΨX + γIT )−1, we may use

ΨXQ̄ = (ΨX + γIT − γIT ) (ΨX + γIT )−1 = IT − γQ̄

in the second term in brackets to finally retrieve the form of Conjecture 1.

6. Concluding Remarks. This article provides a possible direction of
exploration of random matrices involving entry-wise non-linear transforma-
tions (here through the function σ(·)), as typically found in modelling neural
networks, by means of a concentration of measure approach. The main ad-
vantage of the method is that it leverages the concentration of an initial
random vector w (here a Lipschitz function of a Gaussian vector) to trans-
fer concentration to all vector σ (or matrix Σ) being Lipschitz functions of
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w. This induces that Lipschitz functionals of σ (or Σ) further satisfy con-
centration inequalities and thus, if the Lipschitz parameter scales with n,
convergence results as n→∞. With this in mind, note that we could have
generalized our input-output model z = βTσ(Wx) of Section 2 to

z = βTσ(x;W)

for σ : Rp × P → Rn with P some probability space and W ∈ P a ran-
dom variable such that σ(x;W) and σ(X;W) (where σ(·) is here applied
column-wise) satisfy a concentration of measure phenomenon; it is not even
necessary that σ(X;W) has a normal concentration so long that the corre-
sponding concentration function allows for appropriate convergence results.
This generalized setting however has the drawback of being less explicit and
less practical (as most neural networks involve linear maps Wx rather than
non-linear maps of W and x).

A much less demanding generalization though would consist in changing
the vector w ∼ Nϕ(0, Ip) for a vector w still satisfying an exponential (not
necessarily normal) concentration. This is the case notably if w = ϕ(w̃) with
ϕ(·) a Lipschitz map with Lipschitz parameter bounded by, say, log(n) or
any small enough power of n. This would then allow for w with heavier than
Gaussian tails.

Despite its simplicity, the concentration method also has some strong
limitations that presently do not allow for a sufficiently profound analysis of
the testing mean square error. We believe that Conjecture 1 can be proved
by means of more elaborate methods. Notably, we believe that the powerful
Gaussian method advertised in (Pastur and Ŝerbina, 2011) which relies on
Stein’s lemma and the Poincaré–Nash inequality could provide a refined
control of the residual terms involved in the derivation of Conjecture 1.
However, since Stein’s lemma (which states that E[xφ(x)] = E[φ′(x)] for
x ∼ N (0, 1) and differentiable polynomially bounded φ) can only be used
on products xφ(x) involving the linear component x, the latter is not directly
accessible; we nonetheless believe that appropriate ansatzs of Stein’s lemma,
adapted to the non-linear setting and currently under investigation, could
be exploited.

As a striking example, one key advantage of such a tool would be the
possibility to evaluate expectations of the type Z = E[σσT( 1

T σ
TQ−σ − α)]

which, in our present analysis, was shown to be bounded in the order of
symmetric matrices by ΦCnε−

1
2 with high probability. Thus, if no matrix

(such as Q̄) pre-multiplies Z, since ‖Φ‖ can grow as large as O(n), Z cannot
be shown to vanish. But such a bound does not account for the fact that
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Φ would in general be unbounded because of the term σ̄σ̄T in the display
Φ = σ̄σ̄T + E[(σ − σ̄)(σ − σ̄)T], where σ̄ = E[σ]. Intuitively, the “mean”
contribution σ̄σ̄T of σσT, being post-multiplied in Z by 1

T σ
TQ−σ−α (which

averages to zero) disappears; and thus only smaller order terms remain.
We believe that the aforementioned ansatzs for the Gaussian tools would
be capable of subtly handling this self-averaging effect on Z to prove that
‖Z‖ vanishes (for σ(t) = t, it is simple to show that ‖Z‖ ≤ Cn−1). In
addition, Stein’s lemma-based methods only require the differentiability of
σ(·), which need not be Lipschitz, thereby allowing for a larger class of
activation functions.

As suggested in the simulations of Figure 2, our results also seem to extend
to non continuous functions σ(·). To date, we cannot envision a method
allowing to tackle this setting.

In terms of neural network applications, the present article is merely a
first step towards a better understanding of the “hardening” effect occurring
in large dimensional networks with numerous samples and large data points
(that is, simultaneously large n, p, T ), which we exemplified here through
the convergence of mean-square errors. The mere fact that some standard
performance measure of these random networks would “freeze” as n, p, T
grow at the predicted regime and that the performance would heavily depend
on the distribution of the random entries is already in itself an interesting
result to neural network understanding and dimensioning. However, more
interesting questions remain open. Since neural networks are today dedicated
to classification rather than regression, a first question is the study of the
asymptotic statistics of the output z = βTσ(Wx) itself; we believe that
z satisfies a central limit theorem with mean and covariance allowing for
assessing the asymptotic misclassification rate.

A further extension of the present work would be to go beyond the single-
layer network and include multiple layers (finitely many or possibly a number
scaling with n) in the network design. The interest here would be on the
key question of the best distribution of the number of neurons across the
successive layers.

It is also classical in neural networks to introduce different (possibly ran-
dom) biases at the neuron level, thereby turning σ(t) into σ(t + b) for a
random variable b different for each neuron. This has the effect of mitigat-
ing the negative impact of the mean E[σ(wT

i xj)], which is independent of
the neuron index i.

Finally, neural networks, despite their having been recently shown to op-
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erate almost equally well when taken random in some very specific scenar-
ios, are usually only initiated as random networks before being subsequently
trained through backpropagation of the error on the training dataset (that is,
essentially through convex gradient descent). We believe that our framework
can allow for the understanding of at least finitely many steps of gradient de-
scent, which may then provide further insights into the overall performance
of deep learning networks.

APPENDIX A: INTERMEDIARY LEMMAS

This section recalls some elementary algebraic relations and identities
used throughout the proof section.

Lemma 5 (Resolvent Identity). For invertible matrices A,B, A−1 −
B−1 = A−1(B −A)B−1.

Lemma 6 (A rank-1 perturbation identity). For A Hermitian, v a vector
and t ∈ R, if A and A+ tvvT are invertible, then(

A+ tvvT
)−1

v =
A−1v

1 + tvTA−1v
.

Lemma 7 (Operator Norm Control). For nonnegative definite A and
z ∈ C \ R+,

‖ (A− zIT )−1 ‖ ≤ dist(z,R+)−1

‖A (A− zIT )−1 ‖ ≤ 1

where dist(x,A) is the Hausdorff distance of a point to a set. In particular,
for γ > 0, ‖(A+ γIT )−1‖ ≤ γ−1 and ‖A(A+ γIT )−1‖ ≤ 1.
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