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Abstract
Our article presents a novel data-driven master
Digital Twin (DT) modeling scheme for large hy-
draulic networks in a static regime. We bring two
main contributions in this paper: (i) an input em-
bedding pipeline for 0-D physical systems with
a finely customized multidimensional encoding
of physical values; (ii) a Stochastic Padding Aug-
mentation (SPA) training method that addresses
the challenge of modular inference for serial phys-
ical systems. In one representative test case of
free serial pump concatenation, our innovative ap-
proach reduces the normalized prediction MAE
(Mean Absolute Error) of variable pressure from
13.95% to 0.24%. This work paves the way for
a real master DT modeling scheme that allows
parallel concatenation of physical units and long-
range prediction.

Notations
Given n ∈ N, we denote [n] = {1, . . . , n}. Given x ∈ R,
we denote ⌊x⌋ its integer part and ⌈x⌉ = ⌊x⌋ + 1. When
performing computation in Rn, given i ∈ [n], the notation
ei designates the one-hot vector of Rn, full of zeros and
with only 1 in the ith entry. The ℓ1 norm on Rn is denoted
by ∥ · ∥1 (∀x ∈ Rn: ∥x∥1 =

∑n
i=1 |xi|.

1. Introduction
The term Digital Twin (DT) was first introduced by Michael
Grieves and John Vickers of NASA in the context of prod-
uct management (2019), although early implementations
of a similar concept date back to the 1960s, particularly in
NASA’s Apollo 13 program (Zhang et al., 2021). A Digital
Twin can be interpreted as a virtual counterpart to a phys-
ical entity (Semeraro et al., 2021; Tao et al., 2022; Jones
et al., 2020; Tao et al., 2018). It allows for ultra-high fi-
delity simulation of the status and behavior of the physical
entity, providing significant value in product management,
maintenance, safety, and reliability (Glaessgen & Stargel,
2012). Over the past two decades, DTs have found their
primary applications in manufacturing and are scaling to
various domains such as energy, aerospace and healthcare

(Tao et al., 2022; Yu et al., 2022; Jones et al., 2020; Tao
et al., 2018). Recently, as environmental challenges grow,
digitalization has become an important green approach in
the energy sector (Yu et al., 2022). Energy Digital Twins
(EDTs) enable effective system management, better asset
performance, and optimal decision-making, which can help
reduce energy consumption and environmental impact (Yu
et al., 2022; Do Amaral et al., 2023; Ghenai et al., 2022).

word representation

PpSpeed
mflow

P

tokenize

0 0 0 0

0.8 0.7 0.65

concatenate

manually vectorize

“ mflow [288] , P [4.5]  >->  PpSpeed [43]  ->>  mflow [288] , P[5.5] ”

mflow

P

normalize one-hot encodingarc-encoding

#( )#>-> ->> mflow P288 4.5 PpSpeed 43 …  

…  

… 

Figure 1. Proposed input representation pipeline to transform static
system status into Transformer input. Arc-encoding transforms
scalar values into a 1D vector.

We focus on the virtual counterpart modeling and calibration
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Figure 2. Model structure and input flow. The model receives Arc-encoded inputs and outputs float-encoded system status. For training
and tests, several physical values will be masked and retrieved by the model. The one-hot encoded part is expected to be retained.

aspect of large hydraulic networks, such as those used in
cooling and heating systems. Our primary goal is a master
model that predicts internal thermodynamic variables (such
as pressure, temperature, volumic flow) between different
pieces of equipment (referred to as units), such as pumps,
exchangers, chillers, etc. As for current progress, we con-
sider static systems where no time variable is involved: the
system’s solution is that at the infinity of time.

Currently, conventional DT construction of such systems
is delivered first by manual decomposition of the system.
Then, modeling is done through interface-assisted software.
Each physical unit presents a set of first-principles equations
which describe its behaviors. Several parameters are left
out and only confirmed during calibration, upon which the
model really becomes a twin of the unit. With some numeri-
cal techniques, the software is then able to solve the system
of differential equations together and produce a solution.

An intuitive way to turn to neural networks (NN) approach
is to model the finite number of minimal physical units
with multi-layer perceptrons (MLPs), then concatenate ac-
cordingly to cases. However, this solution is also heavily
tailor-made. Besides, the input/output correspondences of
each MLP limit the flexibility of the entire model. In partic-
ular for calibration and optimization tasks, one might need
to treat some input variables as outputs and vice-versa, but
that is not allowed by such method.

Transformer (Vaswani, 2017) as a NN architecture, differs
from many of the more traditional ones in a way that it
does not presume a fixed input length, making it applicable
to systems of virtually any size. In this work, we treat se-
quences of physical variables and values in the same manner
as words are tokenized in large language models (LLMs).
We propose a Transformer-based approach to create a master
twin model. We apply BERT (Devlin, 2018)-like training,
which enables a bidirectional Transformer to learn the dis-

tribution of valid system statuses. The model is trained to
map any incomplete system status to a valid static solution,
while enough information is given for the solution to be
unique. This approach also allows fast calibration, which is
interpreted as a special case of predictive inference. Once
established, this method can be used for efficient predictive
maintenance (Fault Detection) and energy cost estimation.

It is probably trivial to learn such distribution for any sin-
gle unit. However, the unlimited free assembly between
physical units can be a major challenge. We specifically
desire modular inference, that is, concatenation of new to-
kens to the sequence of a trained scenario should only bring
little effect on the outcome of the trained scenario. Stay-
ing with a small training scheme, we intuitively interpret
Attention mechanism as a convex combination operation
and propose a data-augmentation method to enable such
modular inference.

In this paper, we propose 2 techniques for Transformer-
based modular modeling of physical systems: (i) Arc-
encoding (ARC), which encodes scalar physical values in a
multidimensional manner; (ii) Stochastic Padding Augmen-
tation (SPA), which samples tokens from the input manifold
for padding and forgoes mask-filling with large negative
values. The contributions of our work are as below:

1. A noval tokenization-embedding pipeline to encode
physical system status for Transformer modeling. This
input representation differs from casual LLM tokeniza-
tion convention, which faces the challenge of properly
tokenizing numbers.

2. A bidirectional Transformer model that accurately per-
forms system status predictions within a 0-D and static
regime. The calculation speed is higher than traditional
software solvers.

3. A data-augmentation method based on the intuition
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Concatenate and feed

Mask: fill in “-inf” 
during Attention

Intuitive (Baseline)

Concatenate and feedPaddings sampled 
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Figure 3. Our proposed Stochastic Padding Augmentation (SPA). In SPA, we pad with representations sampled from the input manifold
and forgo padding mask-filling with large negative value.

that Attention mechanism is a convex combination
among projections of visible tokens. We show valid
performance improvements brought by this training
scheme in terms of modular inference in a short-range
prediction task.

2. Related Work
BERT (Devlin, 2018) proposed two pretraining tasks for
language models of Transformer structure exploiting unla-
beled text data. One of the tasks is to fill in masked words
in a sentence. This permits the model to learn the distri-
bution of “valid sentences”. Our work applies this idea on
physics systems. The model is trained to learn the distri-
bution of “valid static solutions of systems”, but in a more
deterministic manner.

Energy Digital Twin Numerous numerical tools are avail-
able to produce EDTs. A distinction can be made between
two main categories: (i) physical equation-based methods
(first-principles methods) and (ii) data-driven methods (Yu
et al., 2022). The first category is widely developed by soft-
ware providers and engineering simulation companies. In
our application domain, two significant drawbacks of the
conventional approach are the tailor-made modeling process
and the substantial time required to solve differential equa-
tions. The time complexity grows exponentially with the
size of the system. We hope to cope with these problems
with data-driven approach.

Transformer for Twin We found several adaptations of
Transformer to Digital Twin modeling. However, most of
these works demonstrated Transformer’s performance as a
tailored twin (Zhao, 2024; Rosyadi et al., 2024; Sun et al.,
2023; Sha et al., 2023; Hou et al., 2023). Some leaned more
on the aspect of product management for DT: (Sun et al.,
2023; Praharaj et al., 2024) focused on model lightweight
and (Wang et al., 2023) proposed a lifelong learning scheme.
Additionally, (Lin et al., 2024) transformed physics data
into word tokens and applied trained LLMs for zero-shot
inference. We notice that it is a common method to apply 1-
D convolutional layers (CNN) to handle spatial inter-token

information (Zhao, 2024; Rosyadi et al., 2024; Praharaj
et al., 2024).

Relative Positioning Encoding (Dufter et al., 2022) sur-
veyed position information handling in Transformers and
classified common approaches into 2 main categories:
Adding Position Embeddings (APE) and Modifying At-
tention Matrix (MAM). MAM allows a position-invariant
injection of relative position information, which is crucial
for modular inference, therefore is adopted in this work.

3. Method
3.1. Baseline

Model Our baseline model is a multi-layer bidirectional
Transformer encoder (Devlin, 2018) which much respects
the original Transformer structure (Vaswani, 2017) except
for the adoption of pre-layer normalization (Pre-LN) (Xiong
et al., 2020). As shown in Figure 2, the model contains 16
layers of multi-head self Attention and feed-forward layer
of factor 4. The model size dmodel is the size of input
representations.

Input representation The process is shown in Figure 1.
We first write the status of a physical system into a word
sequence, then one-hot encode the sematic elements ac-
cording to a manual dictionary. This is feasible for large
hydraulic networks because the number of physical units
is finite and very limited. The numeric elements are nor-
malized, Arc-encoded (Section 3.2), then concatenated to
its corresponding semantic part. Each column of the in-
put representations has 2 segments: one-hot segment and
numeric segment. For those tokens without a scalar value
attached (e.g. BOS, EOS, arrows indicating flow direction),
the numeric segment is set to 0 vector.

After turning a system status into matrix representation, the
input is padded with SPA (Section 3.3). Our input is 3-
dimensional: [B, T, dmodel] where B is batch size, T is the
number of tokens (SPA max-length), dmodel = done hot +
darc is the total size of the 2 segments.
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Train

Test 

# 1

# 
1-2 

# 
1-3

# 
1-4

# 
1-5

# 1 # 2 # 3 # 4 # 5 

ARC + SPA

±1% of value range
error histogram (log)

Figure 4. The error histogram of randomly dropped pressures under different train-test configurations. On the left is baseline method,
different rows signify different training data and different columns signify different test data. By descending on the figure, the training
scenarios get enriched in an accumulative way. On the right is same structure histogram with proposed method under the configuration of
training on #1-2. The 4 rows represent 4 different SPA max-lengths: 30, 50, 80, 120. Our proposed method allows the model to infer the
behaviors of each physical unit in a modular manner. The demonstrated error distribution gives an impression as if such test scenario had
been “seen” during training.

Positioning handling We apply Modifying Attention Ma-
trix (MAM) (Dufter et al., 2022) with an invariant multi-
plicative effect on the weight matrix right ahead of softmax.
This MAM enforces the far-apart tokens to much less partic-
ipate in the computation of each other, unless their conveyed
information gradually fuses throughout multiple layers. In
this work, our multiplicative MAM factor quickly decays
to near-0 values starting from the fifth token distance. This
MAM adapts especially to short-range learning.

Training Our training borrows the idea of word masking
in BERT. Random physical variable values are masked with
NA representation in input and retrieved by the model. We
apply Cross-Entropy loss for the one-hot segments and L1
(MAE) loss for numeric segments.

3.2. Arc-Encoding

Our method proposes an innovative way to encode physical
variables more efficient than simple 0-1 normalization. It
presents three interesting aspects.

1. It embeds 0-1 values in a multi-dimensional space
RdArc (and not just in a two dimensional subspace
of RdArc which would be the naive solution) such that
projections performed during the Attention mechanism
will possibly produce dArc incoherent features to en-
code the whole range of values.

2. The norm of the embedding is constant equal to 1.
Interestingly enough, we found out that for this task,
the performances were optimal when conditioning on
the ℓ1 norm ∥ · ∥1 and not on the ℓ2 norm.

3. It provides a clever way to encode NA values (for
unknowns values, arrows, BOS, EOS) as 0 ∈ RdArc ,
positioning them equidistantly from all other values in
Arc([0, 1]) (in ℓ1 norm).

4. Distances are preserved such that the embedding of
two close (resp. far) values will stay close in RdArc

(resp. far in RdArc )

The definition of the embedding Arc is defined followingly:

Arc : [0, 1] −→ RdArc

t 7−→ Φ(elog(dArc)t)

where

Φ : [1, dArc] −→ RdArc

x 7−→ 1

x

 ⌊x⌋∑
i=1

ei + (x− ⌊x⌋)e⌈x⌉

 .

Note in particular that for all j ∈ [dArc], Φ(j) = 1
j

∑j
i=1 ei.

The first two aspects mentioned above are clearly satisfied by
construction of Arc since we see that the family of vectors

4
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Φ(2) = 1√
2
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3
(1, 1, 1)

RdArc

l−u = 0 u l+u
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ζ
(u

−
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)
2

•

d(u, vu)

d(u, vu)

d(u, v2)

d(u, v1)

ζ(v − l−u )

ζ(v − l+u )

2 − ζ(v)

Figure 5. (Left) Representation of the image projected by the mapping Φ when dArc = 3. (Right) Graphical computation of d(u, v) for
dArc = 7, u ∈ [0, 1] and different values of v ∈ [u, 1]: v1 < vu = ζ−1(2− ζ(u− l−u )) < v2.

(Arc(0), . . . ,Arc(1)) = (Φ(1), . . . ,Φ(dArc)) are linearly
independent and ∀x ∈ [1, dArc], ∥Φ(x)∥1 = ⌊x⌋

x + x−⌊x⌋
x =

1.

Let us then see how the distance is treated. If ⌊x⌋ < ⌊y⌋,
one can compute:

∥Φ(z)− Φ(x)∥

= ⌊x⌋
(
1

x
− 1

y

)
+

∣∣∣∣1y − x− ⌊x⌋
x

∣∣∣∣+ ⌊y⌋ − ⌊x⌋ − 1

y
+

y − ⌊y⌋
y

=


2⌊x⌋
x

(
1− x

y

)
if

x− ⌊x⌋
x

≤ 1

y

2

(
1− ⌊x⌋+ 1

y

)
if

x− ⌊x⌋
x

≥ 1

y

(1)

Note that both quantities are equal when x−⌊x⌋
x = 1

y . Be-

sides, if ⌊x⌋ = ⌊y⌋, then ∥Φ(z)− Φ(x)∥ = 2⌊x⌋
x

(
1− x

y

)
(it is not surprising since simple functional analysis allows
to show that x−⌊x⌋

x ≤ 1
⌊x⌋+1 ≤ 1

y , the first condition is thus
satisfied). For simplicity, for u ∈ [0, 1], and v ∈ [u, 1], we
denote:

l−u ≡ log(⌊eu log dArc⌋)
log dArc

≤ u ≤ l+u ≡ log(⌊eu log dArc⌋+ 1)

log dArc

and: d(u, v) ≡ ∥Arc(u)−Arc(v)∥ .

As a direct consequence of (1), one can show:

Lemma 3.1. The mapping Arc satisfies for all u ∈ [0, 1]
and and any v ∈ [u, 1]:

d(u, v) = max
(
ζ(v − l−u )− ζ(u− l−u ), ζ(v − l+u )

)
where: ζ : t 7→ 2(1− e−t log(dArc))

In particular, if l−u = u, d(u, v) = ζ(v − u).

Figure 5 represents graphically the computation of the dis-
tance d(u, v) that depends on the position of v towards

vu ≡ ζ−1(2−ζ(u− l−u )). One can check that the proximity
relation is preserved, meaning that |u− v| ≤ |u′ − v′| ⇐⇒
d(u, v) ≤ d(u′, v′).

3.3. Obstacle for Modular Inference

Recall the original attention equation in (Vaswani, 2017):
Attention(Q,K, V ) = softmax(QKT

√
dK

)V , where Q,K, V

are projections by 3 matrices of the input X at current layer.
We notice that the final stage of attention is matrix multi-
plication between a row-normalized1 weight with V , which
means each output row of attention is a convex combination
of rows of V . Denote N the number of visible tokens in an
inference case, denote V = [v1, · · · , vN ] where vTi is ith

row of V , we have the jth token’s output row as

[Attention(Q,K, V )]j =

N∑
i=1

σjivi,
∑
i

σji = 1; (2)

σji ≥ 0, ∀i ∈ [N ]

where σji is given by jth row of Q and all rows of K.

Our goal is to enforce the model to output invariant outcome
for “mastered” sequence of tokens while more tokens are
concatenated at input. Suppose the model has already per-
fect performance on the above N -token sequence. Now we
concatenate M new tokens to the N -token sequence, the jth

token’s outcome in (2) becomes:

[Attention(Q,K, V )]
′
j =

N∑
i=1

σ′
jiv

′
i +

M∑
m=1

σjmvm,∑
i

σ′
ji +

∑
m

σjm = 1;

σ′
ji ≥ 0, ∀i ∈ [N ]; σjm ≥ 0, ∀m ∈ [M ]

1“Normalized” in a way that each row has a 1-norm of 1.
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where {σjm}m are by construction non-negative, due to
which every element of {σ′

ji}i suffered a decay. It is intu-
itive that the new outcome of the N -token sequence will
be affected. Although we apply a decaying multiplicative
factor by MAM for far-apart tokens, we still do not even
loosely have the promise of robustness.

To enable this robustness, we propose a data augmentation
method: Stochastic Padding Augmentation (SPA) as shown
in Figure 3. With SPA, we forgo padding masking (mask-
filling with large negative values) during attention. We
preserve a large enough padded input length (we refer to as
SPA max-length) and sample token presentations from the
valid input manifold to pad. More precisely, every sampled
padding vector is the concatenation of a random one-hot
vector and the Arc-encoding of a normalized random scalar
value.

By fixing a same SPA max-length during training and tests,
denoted as N +M , the jth token’s outcome in (2) is now

[Attention(Q,K, V )]j =

N∑
i=1

σjivi +

M∑
m=1

σjmvm

during both training and inference. Without SPA, the part∑M
m=1 σjmvm would be zero projections induced by zero

padding, which brings bias to this combination. Our heuris-
tic relies on the idea that the stochastic similarity between
SPA tokens and actual tokens will provide robustness to the
Attention mechanism’s centroid estimation through padding.

4. Experiments

PpSpeed
mflow

P

mflow

P
#1 #4

#2 #3

#5

Figure 6. The serial unit concatenation scenarios in our toy exam-
ple. The most exploited case is to train on scenario #1-2 and test
on scenario #5.

In this section, we use a toy example to demonstrate our
proposed methods: serial concatenation of pumps. This
toy example naturally extends to larger problems because
the number of physical units is finite in hydraulic networks.
Therefore, the number of involved physical variables and

targeted physical relations is also finite. Adapting to all phys-
ical units simply involves introducing additional variable
names with corresponding data, and potentially utilizing a
larger Transformer.

Our main focus is to train on simpler scenarios and test on
more complicated ones. As shown in Figure 6. We refer
to unit concatenation of 1, 2, · · · , 5 pumps as scenario #1,
#2, · · · , #5. For each scenario, the number of valid input
tokens is different. For example, scenario #1 presents 9
valid tokens and #2 presents 14. Under human logic, if
a model has mastered the functionality of #1, then it is
reasonable that it knows to solve #2 (under the condition
that each minimal truncation of a pump has unique solution,
which corresponds to the complexity that #1 dataset can
offer), since #2 is the twice modular concatenation of #1.
However, the baseline model would fail since it is used to
dealing with only 9 visible tokens. In this section, we will
demonstrate the improvement of our approach in a short-
range prediction manner (with respect to the complexity that
#1 dataset offers).

4.1. Model Optimization

The Transformer model parameters are initialized with nor-
mal distribution N (0, 0.02). We adapted AdamW optimizer.
Each configuration is trained with 3 trials and for each trial
240 epochs with decaying learning rates. The trial with
best MAE for masked numeric values is chosen for final
representation.

4.2. Data

There are three physical variables to be masked and retrieved
in this problem (Table 1).

Table 1. Three types of involved variables and their value range.
The unit “rpm” stands for “rotation per minute”.

Abbr. Variable Name Value Range Unit

P pressure 1-6 bar
mflow volumic flow rate 5-360 L/s

PpSpeed rotational speed of pump 30-50 rpm

The 5 concatenation situations in Figure 6 involve a same
pump, whose functioning nature can be described as :

Pout − Pin = f(mflow,PpSpeed,params)

where Pin and Pout respectively signify pressure before and
after the pump. The intrinsic parameters are omitted in
experiments since they remain identical. We generate 500k
synthetic data of up to 5 concatenations of this pump with a
physics equation-based model, then filter with valid value
ranges and obtain 5 datasets. For training and test data,

6
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one of the three types of variables is randomly dropped
at various positions, respecting the rule that the minimal
truncations of each pump all present enough information for
a unique solution.

4.3. Comprehensive Test Case Example

For a comprehensive view of our predictive inference, we
demonstrate a test case of our proposed method in Figure 7.
In this test case, we manually dropped 3 types of values at 4
positions at once. We specify that the model is trained on
data of scenario #1 and #2, input structures of which at best
represent less than half of that of the test input.

±1% of value range predictionerror histogram (log) ground truth (sorted)

Figure 7. A test on scenario #5 while the model is only trained on
scenario #1 and #2: on 20K test data, P0, PpSpeed1, P3, and
mflow5 are simultaneously masked for the model to retrieve. On
the top line, each error histogram (pink) is computed with 20K
error values. The green band signifies ± 1% of the value range.
As for each figure on the bottom line, the blue points are 20K
ground truth values, sorted in ascending order; the orange points
are the corresponding predictions, which obey the re-ordering of
the ground truths. In the ideal case, orange points should overlap
exactly with the blue ones.

4.4. Comparison between Baseline and Proposed

One intuitive train-test configuration is to train on scenario
#1 and test on scenario #5. In order to better observe the
performance of baseline method, we accumulatively enrich
training scenarios and test on #1 to #5 separately. Some
qualitative results are shown in Figure 4.

One can observe for baseline that the lower triangular zone
of the train-test cases has nice constrained error distributions,
which is natural since the test sequences were all “seen” dur-
ing training in these configurations. However, the model
demonstrates catastrophic behaviors when asked to extrapo-
late to “unseen” cases, while structurally, the “unseen” cases
are only longer unit repetitions of trained cases.

In the following part of this section, we will focus on the
configuration of training on #1-2 to more precisely evalu-
ate our proposed method, since it is the minimal training
scenario which covers all 3 possible positions of variable

Table 2. Mean and std of normalized absolute errors of three types
of randomly masked variables. Comparison is listed between
baseline and proposed method (Arc-encoding + SPA). The models
are trained on scenario #1-2. The 5 rows indicate 5 test scenarios.

Test Baseline (%) SPA+ARC (%)
mean std mean std

#1
P 0.07 0.12 0.03 0.12

mfl 0.04 0.04 0.03 0.07
PpSpd 0.12 0.25 0.05 0.07

#2
P 0.25 0.29 0.02 0.06

mfl 0.08 0.07 0.02 0.06
PpSpd 0.29 0.41 0.03 0.05

#3
P 8.30 9.30 0.14 0.58

mfl 0.51 0.46 0.07 0.19
PpSpd 4.22 3.13 0.06 0.11

#4
P 9.26 7.73 0.13 0.41

mfl 0.68 0.67 0.11 0.29
PpSpd 7.04 6.23 0.09 0.16

#5
P 13.95 10.82 0.24 0.80

mfl 0.57 0.59 0.15 0.35
PpSpd 10.88 9.23 0.13 0.24

pressure in serial systems: before a pump, after a pump, and
between 2 pumps.

In Table 2, we quantitatively list the comparison between
baseline and proposed method, while training on scenario
#1-2 and testing on #1 - #5 separately. The five test datasets
all respectively contain 20K test data. For each data in tests,
one of the three variable types will be randomly chosen to
be masked and retrieved by the model. The positions of the
dropped values are randomly chosen. For instance, in some
cases, all the PpSpeeds in the sequence will be dropped
simultaneously, since the truncated minimal systems still
present unique solutions in this case.

One can observe that the error of baseline increments drasti-
cally when the test scenario contains more unit concatena-
tions than in training data. On the other hand, the prediction
error of proposed method only augmented slightly. The
#3, #4 and #5 test of proposed method share similar mean
and std range with the baseline #2 test. This suggests that
the proposed model is able to infer in a modular manner,
under which learning on minimal scenario permits accurate
inference on longer unit concatenations.

4.5. Arc-Encoding vs without

In this subsection, we compare the test prediction accuracy
between natural float encoding and Arc-encoding. As for
the value masking for float encoding, we use an “impos-
sible” value: -1. We retain the train-test configurations in
Section 4.4. In Table 4, one can observe that Arc-encoding
has some slight advantages in terms of bias in this use case.
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Table 3. Normalized mean and 90 percentile of absolute error of three types of variables in % with different SPA max-lengths for training
and tests. The error is overall minimal if we use same SPA max-length for training and test. There is a bigger risk in training with large
max-length and testing with small ones. We specify that the test sequence of scenario #5 is of length 29 and the train sequences are of
length 9 and 14 for scenario #1 and #2.

Train Test - P (%) Test - mflow (%) Test - PpSpeed (%)

SPA max-length 30 50 80 120 30 50 80 120 30 50 80 120

mean

30 0.03 0.07 0.29 0.62 0.21 0.19 0.22 0.23 0.41 0.36 0.35 0.37
50 0.12 0.06 0.09 0.16 0.17 0.03 0.05 0.28 1.46 0.10 1.54 3.12
80 0.27 0.14 0.03 0.11 1.05 0.20 0.08 0.21 0.82 0.21 0.08 0.18
120 0.46 0.29 0.15 0.03 0.54 0.37 0.19 0.08 6.03 4.49 2.31 0.09

90 30 0.03 0.02 0.02 0.03 0.61 0.44 0.80 0.97 0.69 0.51 0.58 0.82
50 0.13 0.04 0.02 0.03 0.58 0.11 0.17 1.02 6.43 0.34 6.63 13.65

percentile 80 0.22 0.05 0.02 0.03 3.46 0.71 0.25 0.73 2.26 0.68 0.23 0.66
120 0.50 0.22 0.10 0.03 2.12 1.58 0.87 0.36 30.36 22.11 10.98 0.33

Table 4. Mean and std of normalized absolute errors of three types
of randomly masked variables. Comparison is listed between 2
input encoding methods: without and with Arc-encoding. The
models are trained on scenario #1-2. The 5 rows indicate 5 test
scenarios.

Test SPA (%) ARC+SPA (%)
mean std mean std

#1
P 0.23 0.39 0.03 0.12

mfl 0.11 0.14 0.03 0.07
PpSpd 0.15 0.20 0.05 0.07

#2
P 0.16 0.19 0.02 0.06

mfl 0.11 0.12 0.02 0.06
PpSpd 0.14 0.18 0.03 0.05

#3
P 0.34 0.30 0.14 0.58

mfl 0.11 0.12 0.07 0.19
PpSpd 0.15 0.20 0.06 0.11

#4
P 0.36 0.27 0.13 0.41

mfl 0.12 0.14 0.11 0.29
PpSpd 0.19 0.23 0.09 0.16

#5
P 0.57 0.43 0.24 0.80

mfl 0.13 0.15 0.15 0.35
PpSpd 0.24 0.27 0.13 0.24

4.6. Robustness across SPA max-lengths

Our SPA max-length is primarily fixed throughout training
and tests. As explained in Section 3.3, utilizing different
max-lengths might affect the balancing in the convex com-
bination between V rows in Equation (2).

We investigate in Table 3 the risky cases where the training
and test SPA max-lengths do not match. The 4 models
were trained on scenarios #1-2 and tested on #5 under same
configurations in Section 4.4. One can observe a solid
promise of trustworthy performances while using invariant
max-length. As for the cases where training and test max-
lengths do not match, the model is still robust in terms of P

and mflow predictions.

5. Conclusion
In this work, we initiated trials to utilize data-driven ap-
proach in the modeling of a master Digital Twin (DT) of
large hydraulic networks. We introduced a tokenization-
embedding pipeline to represent physical system statuses
for BERT-like training. Starting from the intuition that At-
tention mechanism is a convex combination operation, we
proposed Stochastic Padding Augmentation (SPA) to en-
able modular inference. We demonstrated our proposed
Arc-encoding and SPA for a model to be trained on limited
unit concatenations of a pump, and tested on longer unseen
concatenations. Our method shows promising performances
in the context of short-range prediction.

This work paves the way for a real Transformer-based master
Digital Twin for large hydraulic networks which is capa-
ble of treating parallel unit concatenations and long-range
prediction.

Impact Statement
This paper presents work whose goal is to advance the appli-
cation of data-driven approach in the field of Digital Twin.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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